waLBerla: Brownian fluctuations in lattice Boltzmann simulations on mesoscales
Philipp Neumann, Christian Feichtinger, Klaus Iglberger, Ulrich Rüde
University of Erlangen-Nürnberg, Chair of Computer Science 10 LSS
Technical University of Munich, Chair of Computer Science 5 SCCS

- waLBerla framework
 - waLBerla framework
 - Parallel LB framework with adjustable functionality for various CFD applications
 - Adjustable functionality:
 - Flexible integration of new functionality
 - Specialization of functionality for efficiency improvements
 - CFD applications:
 - Homogeneous mixtures
 - Free-Surfaces
 - Brownian motion
 - Turbulence
 - Fluid structure interaction

- The fluctuating lattice Boltzmann method (FLB)
 - Lattice Boltzmann update rule
 \[
 f_i'(x,t) = f_i^* + \Delta (f_i^{neq})
 \]
 - Collision operator \(\Delta (f_i^{neq}) \) for FLB ([1]):
 \[
 \begin{align*}
 \gamma_i &= \sqrt{\mu(T) \rho \cdot a^T} \cdot f_i^{neq} \quad \text{Thermal normalisation} \\
 m_i &= \sum E_{ik} \gamma_i \quad \text{Mapping to momentum space} \\
 \gamma_i &= \gamma_i m_i + \phi_i t_i \quad \text{Collision update including Gaussian noise (}\phi_i t_i\text{)} \\
 m_i' &= \sum E_{ik} m_i' \quad \text{Mapping to velocity space} \\
 f_i^{neq} &= \sqrt{\mu(T) \rho \cdot a^T} \cdot \gamma_i \
 \end{align*}
 \]
 - Variances \(\varphi \) of Gaussian noise chosen such that
 \[
 \text{Var}(\varphi) \to \text{Theory-Enskog-Chapman} \quad \text{with}
 \]
 \[
 \text{Cov}(Q_{\varphi}(x,t), Q_{\varphi}(x',t')) = \frac{2k_B T}{\Delta x^T} \left[\eta_{\text{bulk}} - 2 \frac{1}{3} \eta_{\text{bulk}} \right] \delta_{x'} \delta_{y'} + \eta_{\text{bulk}} \delta_{x'} \delta_{y'}
 \]

- Brownian fluctuations in fluid flow
 - FIG. 1: Example of Brownian fluctuations in fluid flow

- Mean squared particle displacements
 - FIGS. 4, 5: Numerical measurement of mean squared particle displacements

- references: