Microscopic Swimmers

pe - Rigid Body Dynamics
- Framework for physically accurate and virtual reality multibody simulations
- Highly flexible, massively parallel implementation
- Fully resolved objects (e.g., spheres, boxes) ...
 - ... can be easily exchanged
 - ... based on Newton’s mechanics
- Connections between objects can be ...
 - ... soft constraints (e.g., spring-damper systems) or
 - ... hard constraints (e.g., hinges)

waLBerla - Fluid Simulation
- Widely applicable Lattice Boltzmann solver from Erlangen
- Framework for physically correct fluid simulations
- Large-scale, MPI based parallelization
- Equidistant, (block-)structured lattice grid
- D3Q19 velocity phase discretization model
- No-slip walls for the channel domain

Coupling pe and waLBerla
- Algorithm 1: Coupled LBMPE solver for the swimmers
 1. \(\text{Mapping step} \)
 2. for each swimmer \(i \) do
 3. Map \(R_i \) to lattice grid
 4. end for
 5. \(\text{Reynolds number constraint} \)
 6. for each lattice cell \(x \) do
 7. \(\text{Stream and collide} \)
 8. end for
 9. \(\text{Time step in the single swimmer simulation} \)
 10. for all rigid bodies \(x \) do
 11. \(\text{Apply external forces} \)
 12. \(\text{for each contact} k \) do
 13. \(\text{Determine action constraint forces} \)
 14. \(\text{end for} \)
 15. \(\text{Time integration} \)
 16. for each rigid body \(x \) do
 17. \(\text{Apply forces} \)
 18. \(\text{Update position and velocity} \)
 19. \(\text{end for} \)
 20. \(\text{end for} \)

Results
- Largest multibody simulation: 2 billion rigid bodies!!
- Largest fluid simulation: 32 billion fluid cells!!

Prerequisites
(exemplified on a three-sphere swimmer)
- Connections between objects are most commonly modeled as ...
 - Stiff rods ...
 - Springs
 - We have: Spring-damper systems
 - Force protocol
 - Cycling strategy

Modeling of the Swimmer
(exemplified on a three-sphere swimmer)
- External force pulse

Stability and Validity
- Propulsive motion

Design Parameter Study
- Total swimming distance after 5 swimming cycles with appropriate Reynolds number \(\text{Re} \) of each of the three bodies and of the total swimming device
 \[\Delta t = \text{covered distance of the swimmer after one swimming cycle} \]

Outlook
- Investigate behavior of more than one swimmer
- Resulting large flow field (no wall effects) needs to be capable of handling parallelized springs
- Determine fastest configuration of one single swimmer (e.g., optimal armlength) with help of several parameter studies
- Detailed validation in fluid

Contact: Kristina.Pickl@informatik.uni-erlangen.de

A. Najafi and R. Golestanian: Simple swimmer at low Reynolds number: Three linked spheres.
C.M. Pooley and J.M. Yeomans: Lattice boltzmann simulation techniques for simulating microscopic swimmers.

Microscopic Swimmers

pe - Rigid Body Dynamics
- Framework for physically accurate and virtual reality multibody simulations
- Highly flexible, massively parallel implementation
- Fully resolved objects (e.g., sphere, box) ...
 - ... can be easily exchanged
 - ... based on Newton’s mechanics
- Connections between objects can be ...
 - ... soft constraints (e.g., spring-damper systems) or
 - ... hard constraints (e.g., hinges)

waLBerla - Fluid Simulation
- Widely applicable Lattice Boltzmann solver from Erlangen
- Framework for physically correct fluid simulations
- Large-scale, MPI based parallelization
- Equidistant, (block-)structured lattice grid
- D3Q19 velocity phase discretization model
- No-slip walls for the channel domain

Coupling pe and waLBerla
- Algorithm 1: Coupled LBMPE solver for the swimmers
 1. Mapping step
 2. for each swimmer \(i \) do
 3. Map \(R_i \) to lattice grid
 4. end for
 5. Reynolds number constraint
 6. for each lattice cell \(x \) do
 7. Stream and collide
 8. end for
 9. Time step in the single swimmer simulation
 10. for all rigid bodies \(x \) do
 11. Apply external forces
 12. for each contact \(k \) do
 13. Determine action constraint forces
 14. end for
 15. Time integration
 16. for each rigid body \(x \) do
 17. Apply forces
 18. Update position and velocity
 19. end for
 20. end for
 21. end for

Results
- Largest multibody simulation: 2 billion rigid bodies!!
- Largest fluid simulation: 32 billion fluid cells!!

Prerequisites
(exemplified on a three-sphere swimmer)
- Connections between objects are most commonly modeled as ...
 - Stiff rods ...
 - Springs
 - We have: Spring-damper systems
 - Force protocol
 - Cycling strategy

Modeling of the Swimmer
(exemplified on a three-sphere swimmer)
- External force pulse

Stability and Validity
- Propulsive motion

Design Parameter Study
- Total swimming distance \(\Delta t \) after 5 swimming cycles with appropriate Reynolds number \(\text{Re} \) of each of the three bodies and of the total swimming device

Outlook
- Investigate behavior of more than one swimmer
- Resulting large flow field (no wall effects) needs to be capable of handling parallelized springs
- Determine fastest configuration of one single swimmer (e.g., optimal armlength) with help of several parameter studies
- Detailed validation in fluid

Contact: Kristina.Pickl@informatik.uni-erlangen.de

A. Najafi and R. Golestanian: Simple swimmer at low Reynolds number: Three linked spheres.
C.M. Pooley and J.M. Yeomans: Lattice boltzmann simulation techniques for simulating microscopic swimmers.