New Finite Elements for Large-Scale Simulation of Optical Waves

B. Heubeck1 C. Pflaum1 G. Steinle2

1Department of System Simulation (LSS)
University of Erlangen-Nuremberg, Germany

2Infineon Munich, Germany

ICIAM July 19th 2007
Outline

1. Problem
2. Trigonometric Finite Wave Elements
3. Numerical Results
4. Summary and Outlook
Distributed Feedback Laser

Goal

Simulation of the optical wave in DFB lasers

DFB laser

- Layers with different refraction indices (gratings) → Internal reflections of the optical wave
- Long resonator with length L
- Small stripe width of size s of injection current j
Difficulties in the simulation of the optical wave

Goal
Simulation of the optical wave in DFB lasers

Difficulties
- Large-scale simulations of the wave equation require a large number of grid points
- Internal reflections \(\rightarrow\) Propagation in \(x\) and \(-x\) direction has to be treated simultaneously
State of the Art

Well-known methods for the simulation of optical waves

- Beam Propagation Method
- Finite Element Ray Method
- Partition of Unity Finite Element Method
- Finite Difference Time Domain Method
- Finite Element Method with standard Finite Elements

But: Internal reflections and large resonators cannot be simulated by these methods

→ Transfer Matrix Method (TMM)

But: Tapered lasers need a 2D-simulation
We are looking for Finite Elements that solve the wave equation as exact as the TMM → **Trigonometric Finite Wave Elements** (TFWE) as a linear combination of sine and cosine functions that approximate the behavior of an oscillating and internal reflected wave

Construct TFWE in 2D by a tensor product of 1D TFWE in propagation direction and linear nodal basis functions in perpendicular direction → Non-conforming TFWE in 2D

→ TFWE method combines advantages of TMM and FEM
Trigonometric Finite Wave Elements in 1D

1D linear nodal basis functions are multiplied by appropriate sine and cosine functions → Every node has three basis functions:

Remark: Multiplying the linear nodal basis functions with $\exp(\pm ikx)$ leads to numerical problems, as the basis functions are less orthogonal

k: wave number
Non-conformity of the 2D-TFWE

Wave number k varies in y-direction \rightarrow Discontinuity of the basis functions in y-direction from cell to cell
Oscillation Assumption

Let $u \in H^2(\Omega)$ oscillate with a frequency $\omega \approx ck$. This means, that $u = u^+ \exp(ikx) + u^- \exp(-ikx)$, where $u^+ \exp(ikx) \in C(\Omega)$, $u^- \exp(-ikx) \in C(\Omega)$, $|u^+|_{H^2(\tilde{\Omega}_h)} \ll |u|_{H^2(\Omega)}$, and $|u^-|_{H^2(\tilde{\Omega}_h)} \ll |u|_{H^2(\Omega)}$.
Approximation property in 1D

Oscillation Assumption

Let \(u \in H^2(\Omega) \) oscillate with a frequency \(\omega \approx ck \).

Theorem

Let \(u \in H^2(\Omega) \) satisfy the Oscillation Assumption. Then, there exists a constant \(C \) independent of \(h \) and \(k_{\text{max}} := \max_{1 \leq j \leq N} |k_j| \) such that

\[
|u - l_{h}^{\text{osc}}(u)|_{H^1(\Omega)} \leq C(k_{\text{max}} h + 1) h \left(|u^+|_{H^2(\tilde{\Omega}_h)} + |u^-|_{H^2(\tilde{\Omega}_h)} \right).
\]

\(\tilde{\Omega}_h \): \(\Omega \) without grid points
\(l_{h}^{\text{osc}} : H^2(\Omega) \rightarrow V_h \): interpolation operator
\(V_h \): TFWE space
\(h \): mesh width
\(k_j \): discretized wave numbers
\(c \): velocity of light
Convergence of the 2D non-conforming TFWE

Theorem

Let \(u \in H^2(\Omega) \). Then, there exists a constant \(C \) independent of \(h := \max\{h_x, h_y\} \) such that

\[
\| u - u_h \|_{H^1(\tilde{\Omega}_h)} \leq C h \| u \|_{H^2(\Omega)}.
\]

Proof

- Lemma of Strang
- Detailed analysis of the non-conforming TFWE with the help of a computer algebra system

\(\tilde{\Omega}_h \): \(\Omega \) without horizontal grid lines

\(h := (h_x, h_y) \): tuple of mesh widths

\(u_h \): exact solution of the discretized problem
System of Coupled Partial Differential Equations

- Behavior of wave is described by

\[2i \frac{k(n_A)^2}{\omega} \frac{\partial E}{\partial t} = \triangle E + k(n_A)^2 E \]

- Equations for carrier densities \(n_A \) and \(n_B \)

\[
\begin{align*}
\frac{\partial n_A}{\partial t} &= \nabla(D_A \nabla n_A) + \frac{n_B}{\tau_{cap}} - \frac{n_A}{\tau_{esc}} - r_{rec,A}(|E|^2, n_A) \\
\frac{\partial n_B}{\partial t} &= \nabla(D_B \nabla n_B) + \eta_{i,leck} \frac{j}{qd_B} - \frac{n_B}{\tau_{cap}} \frac{d_A}{d_B} + \frac{n_A}{\tau_{esc}} \frac{d_A}{d_B} - r_{rec,B}
\end{align*}
\]

\(D_A, D_B \): ambipolar diffusion constants \(\tau_{cap} \): effective carrier aligning time
\(r_{rec,A}, r_{rec,B} \): recombination densities \(\tau_{esc} \): carrier emission time
\(d_A, d_B \): thickness of active zone, barriers \(j \): current density
\(\eta_{i,leck} \): internal efficiency \(q \): elementary charge
Spatial Hole Burning

Photon density n

Carrier density n_A

Spatial hole burning in areas of high photon density with period $\frac{\lambda}{2}$
Higher Order Modes

Photon density n at stripe width $25\mu m$

Photon density n at stripe width $40\mu m$
Tapering

Current density j

Photon density n

Tapered lasers combine the beam quality of a Ridge Waveguide laser with the high power known from Broad Area lasers.
Summary

- TFWE lead to better performance than standard FE
- Internal reflections can be simulated
- 2D-simulation of large resonators is possible

→ TFWE method combines advantages of FEM and TMM

- Approach shows laser-typical effects such as spatial hole burning
- Influence of stripe width and current to the order of the resulting mode can be examined

→ Simulation can support the tuning of DFB lasers
Outlook

- Extension of the simulation to 3D
- Introduction of multigrid method for solving the wave equation
- Fourier analysis of the optical wave in time
- Extension of the simulation to Maxwell’s equations for analyzing the polarization of the optical wave
Acknowledgments

Thanks to the support of the Erlangen Graduate School in Advanced Optical Technologies (SAOT)