Numerical Analysis of Stokes Equations with Improved LBB Dependency

Matthias Wohlmuth

Chair of Computer Science 10 - System Simulation (LSS)

20th Chemnitz FEM Symposium 2007, 24 Octobre 2007
common testing domains for Simulations are **spheres, cubes**

But what are **appropriate** testing domains for CFD ???

Flow in tubes / pipelines
Water flow in nature

Typical Domains in Computational Fluid Dynamics
Domain-Dependency of Stokes Problem

Motivation
Improved A-priori Results
LBB-friendly Methods
Summary and Acknowledgments
Weather Simulation

weather is determined in troposphere (8 – 15 km)
Medical Application

e.g. simulation of aneurysms at Univ. Erlangen (J. Goetz)
Domains with large aspect ratio

Definition (Aspect Ratio a)

\[
a \approx \frac{\text{largest elongation}}{\text{smallest elongation}}
\]

- $a \propto$ length of tube, pipeline
- $a \propto 10^2$ for weather simulation above Germany
- $a \propto 10^4$ for simulation of whole Baltic Sea
- $a \propto 10^1 - 10^2$ in medical applications
- $a = 1$ for cubes, spheres

⇒ Even if the simulation restricts to a smaller subdomain, dependency on aspect ratio should be avoided!

⇒ Do tests on Stretched Domains $\Omega_a = \Omega \times \{a\}$ with $a(\Omega) \approx 1$
We consider compressible Stokes Equations

\[(Du, Dv) - (\text{div } v, p) = (f, v) \quad \forall v \in X\]
\[(\text{div } u, q) = (g, q) \quad \forall q \in Y\]

with \(f \in L^2(\Omega), g \in H^1_0(\Omega)\)

- \(X = H^1_0(\Omega), \quad Y = L^2(\Omega)_0 = \{ q \in L^2(\Omega) : \int_\Omega q \, dx = 0 \}\)
- \(\|u\|_m^2 = \sum_{\alpha \leq m} \|D^\alpha u\|_{L^2(\Omega)}^2, \quad |u|_m^2 = \sum_{\alpha = m} \|D^\alpha u\|_{L^2(\Omega)}^2\)
- unique solution guaranteed by LBB (or inf-sup) condition:

\[\exists L > 0 \quad \forall p \in Y : \quad L \|p\| \leq \sup_{v \in X} \frac{(\text{div } v, p)}{\|Dv\|} = \|Dp\|_{-1} \leq \|p\|\]
Standard Estimates with LBB Dependency

Regularity

\[|u|_1 \leq \frac{c}{L} \|g\| \quad \text{(Bogovskij)} \]

Error bound for conforming FEM

\[\|u - u_h\|_1 + \|p - p_h\| \leq c \left(c_T, \frac{1}{L} \right) (\|f\| + \|g\|_1) \]

- \(c_T \) is given by regularity of the discretization
- \(\Rightarrow \) domain dependency of solution and approximation \(\propto \frac{1}{L} \)
Domain Dependency of LBB Constant L

- **good:** diam $\Omega = R$ and Ω star-shaped w.r.t radius r

\[1 \geq L \geq c \left(\frac{r}{R} \right)^{n+1} \quad \text{(Bogovskij, 1979)} \]

- **bad:** Stretched Domains $\Omega_a = \Omega \times \{a\}$

\[L(\Omega) \leq \frac{c(\omega)}{a} \quad \text{(Dobrowolski, 2005)} \]

- **bad:** $\Omega_a = \{ y \in \mathbb{R}^n : \left(\frac{y_1}{\alpha_1}, \ldots, \frac{y_n}{\alpha_n} \right) \in \Omega \}$, max $\alpha_i = a$

\[\frac{L(\Omega)}{a} \leq L(\Omega_a) \leq \frac{c(\Omega)}{a} \quad \text{(Dobrowolski, 2003)} \]

- \Rightarrow domain dependency of solution and approximation $\propto a$
Standard regularity result (if $\partial \Omega \in C^2(\Omega)$ or polygonal in 2D):

$$\|u\|_2 + \|p\|_1 < \frac{c}{L} (\|f\| + \|g\|_1)$$

Estimate also important for Aubin/Nitsche-Duality!

Desired improvement:

$$|u|_2 + |p|_1 < c (\|f\| + \|g\|_1)$$

and c independent of L.

- **Problem:** Proof still requires an estimate of $|u|_1$
- \Rightarrow assumptions on g needed (\Rightarrow locally balanced flow)
idea: Divide domain/problem in *harmless* parts

- $\Omega = \{\tilde{\Omega}_i\} \cap \Omega$,
- choose all Ω_i to be sphere-like \Rightarrow harmless L_i.
- $\{\Phi_i\}$ partition of unity on $\{\tilde{\Omega}_i\}$.

Definition (Local 2-Regularity)

Ω is called local 2-regular iff the solution $(u_i, p_i) \in X \times Y$ of the local Stokes problems

$$-\Delta u_i + Dp_i = f_i, \quad \text{div} u_i = g_i \text{ in } \Omega_i, \quad u_i = 0 \text{ on } \partial \Omega_i$$

are in $H^2(\Omega_i)^n \times H^1(\Omega_i)$ and satisfy:

$$\|u_i\|_2 + \|p_i\|_1 \leq c_i(\|f_i\| + \|g_i\|_1)$$
Preparations (2)

Definition (locally balanced flow)

Stokes Equations have **locally balanced flow** iff there exists a partition \(\{\bar{\Omega}_i\} \) of \(\Omega \) with LBB constants \(L_i \) independent of the aspect ratio \(a \) of \(\Omega \) and iff \(g \) satisfies

\[
\int_{\Omega_i} g \, dx = 0 \quad \forall \Omega_i
\]

i.e. sources and drains lie close to each other

- \(c_{Du} \) is defined by:
 \[
 |u|_1 < c_{Du} (\|f\| + \|g\|)
 \]

- regularity constant of **worst** possible configuration in \(\Omega \)

\[
c_R = \sup_{g,f} (c_{Du})
\]
Proof idea:
- divide Ω into subdomains Ω_i with harmless L_i
- use partition of unity to do the proof locally on each Ω_i

Estimates of local Stokes problems:
\[
\|f_i\| \leq \frac{c}{L_i} \left(\|f\|_\Omega_i + \|u\|_{1;\Omega_i} \right),
\]
\[
\|g_i\| \leq c \|u\|_{1;\Omega_i} + c \|g\|_{1;\Omega_i},
\]
\[
\|u\phi_i\|_{2;\Omega_i}^2 + \|(p - p_i)\phi_i\|_{1}^2 \leq c \left(\|f\|_{\Omega_i}^2 + \|u\|_{1;\Omega_i}^2 + \|g\|_{1;\Omega_i}^2 \right).
\]

Summation over i this results in
\[
\|u\|_{2}^2 + |p|_{1}^2 \leq c \left(\|f\|_1^2 + \|g\|_{1}^2 + \|u\|_{1}^2 \right).
\]
Estimate of Du

\[|u|_1^2 = (f, u) + (g, p), \quad \int_{\Omega_i} g = 0 \quad \forall i \]

Above precondition on g allows us to insert $p_i := \int_{\Omega_i} p \, dx$

\[(g, p) = \sum_i \int_{\Omega_i} (p - p_i) g \, dx \leq \sum_i \|p - p_i\|_{\Omega_i} \|g\|_{\Omega_i} \]

Since $p - p_i \in L^2_0(\Omega_i)$ we can apply the LBB condition on $p - p_i$:

\[(g, p) \leq \sum_i \frac{1}{L_i} \|g\|_{\Omega_i} \sup_{v \in H_0^{1,2}(\Omega_i)} \frac{(\text{div} \, v, p - p_i)_{\Omega_i}}{|v|_{1,\Omega_i}} \]

\[\leq c \left(\max_i 1/L_i \right) \|g\| (|u|_1 + \|f\|) \]
What happens without locally balanced flow?

- Problem extremely violates condition of locally balanced flow
- But partial improvement due to:

\[
\begin{align*}
 u(x, y) &\propto y^2 \quad \Rightarrow \quad |u|_1 \propto \sqrt{a} \quad \Rightarrow \quad c_{Du} \propto \frac{1}{\sqrt{L}} \\
 \|u\|_2 + |p|_1 &\leq \frac{c}{\sqrt{L}} (\|f\| + \|g\|_1)
\end{align*}
\]
FEM Setup

Solution \((u_h, p_h) \in X_h \times Y_h \cap Y\) of conforming FEM

\[
(Du_h, Dv_h) - (\text{div} \ v_h, p_h) = (f, v_h) \quad \forall v_h \in X_h
\]
\[
(\text{div} \ u_h, q_h) = (g, q_h) \quad \forall q_h \in Y_h
\]

satisfies the error relations

\[
(D(u - u_h), Dv_h) = (\text{div} \ v_h, p - p_h) \quad \forall v_h \in X_h
\]
\[
(\text{div}(u - u_h), q_h) = 0 \quad \forall q_h \in Y_h.
\]

For simplicity we again restrict to
- 2-regular problems
- first order FE
Approximation Operators

\[
\text{div}(v - \Pi_h v, q_h) = 0 \quad \forall q_h \in Y_h, \\
\|v - \Pi_h v\| \leq c h^k |v|_k \quad \forall k = 0..m, \\
|v - \Pi_h v|_l \leq c h^k |v|_{k+l} \quad \forall k = 1..m, \: l = 0, 1; \\
\|q - S_h q\| \leq c h^k |q|_k \quad \forall k = 0..m, \\
|q - S_h q|_1 \leq c |q|_1,
\]

- We restrict to \(m = 2 \), e.g. operators exist for Mini-Element.
- First condition involves

\[
(\text{div} \: \Pi_h u - u_h, q_h) = 0 \quad \forall q_h \in Y_h.
\]

- Existence of discrete LBB constant \(L_h \) is guaranteed
Theorem

1. Assuming above approximation operators Π_h, S_h, the discrete solution satisfies

$$|u - u_h|_1 \leq ch(|u|_2 + |p|_1).$$

2. If in addition Ω is locally 2-regular, then we obtain

$$\|u - u_h\| \leq ch|u - u_h|_1 + ch^2|p|_k \leq ch^2(|u|_2 + |p|_1).$$

If Ω is locally 2-regular and if the Stokes problem has locally balanced flow, we obtain the LBB-free error bounds

$$|u - u_h|_1 \leq ch(||f|| + ||g||_1)$$

$$\|u - u_h\| \leq ch^2(||f|| + ||g||_1)$$
Proof Sketch

\[|u - u_h|^2_1 = (D(u - u_h), D(u - \Pi_h u)) + (\text{div}(\Pi_h u - u_h), p - S_h p) \]
\[\leq |u - \Pi_h u|_1 |u - u_h|_1 + (|u - \Pi_h u|_1 + |u - u_h|_1) \|p - S_h p\| \]
\[\leq \frac{1}{2} |u - u_h|^2_1 + ch^2 (|u|^2_2 + |p|^2_2). \]

To approach the \(L^2 \)-estimate, we define the dual problem with solution \((\omega, \phi) \in X \times Y\) according to Aubin/Nitsche:

\[(Dv, D\omega) - (\text{div} \, v, \phi) = (u - u_h, v) \quad \forall v \in X, \]
\[(\text{div} \, \omega, q) = 0 \quad \forall q \in Y.\]

Dual problem is locally 2-regular, due to \(g \equiv 0 \):

\[\|\omega\|_2 + |\phi|_1 \leq c \|u - u_h\|. \]
Proof Sketch (2)

Again we insert approximation operators at appropriate positions:

\[
\|u - u_h\|^2 = (D(u - u_h), D(w - \Pi_h\omega)) + (\text{div} \, \Pi_h\omega, p - p_h) - (\text{div}(u - u_h), \phi - S_h\phi).
\]

Using

\[
(\text{div} \, \omega_h, p - p_h) = (\text{div}(\Pi_h\omega - \omega), p - S_hp) \leq |\Pi_h\omega - \omega|_1 \|p - S_hp\|,
\]

we obtain

\[
\|u - u_h\|^2 \leq |u - u_h|_1 ch (|\omega|_2 + |\phi|_1) + ch^2 |\omega|_2 |p|_1
\]

\[
\leq c \|u - u_h\| (h |u - u_h|_1 + h^2 |p|_1)
\]

\[
\|u - u_h\| \leq ch^2 (\|u\|_2 + |p|_1).
\]
Pressure Error in Dual Norms

- immediate calculation shows
 \[\| D(p - p_h) \|_{-1} \leq c h (|u|_2 + |p|_1) \]

- no surprise, due to LBB-condition
 \[\| p - p_h \| \leq \frac{1}{L} \| D(p - p_h) \|_{-1} \]

- \(\| p - p_h \|_{-1} \) requires dual problem for arbitrary \(\tilde{g} \)
 \[(D\omega, D\phi) + (\text{div} \phi, q) = 0 \quad \forall \phi \in X, \]
 \[(\text{div} \omega, \psi) = (\tilde{g}, \psi) \quad \forall \psi \in Y, \]

- only partial improvement from \(\frac{1}{L} \) to \(c_R \)
 \[\| p - p_h \|_{-1} \leq c c_R h^2 (|u|_2 + |p|_1) \]
technical computation yields inverse inequality
\[\forall q_h \in Y_h \subset H^1(\Omega): \]
\[\| Dq_h \| \leq c h^{-1} \| Dq_h \|_{-1,h;\Omega} := \sup_{v_h \in X_h} \frac{(v_h, Dq_h)}{|v_h|_1} \]

as a corollary one obtains
\[|p - p_h|_1 \leq |p - S_h p|_1 + |S_h p - p_h|_1 \]
\[\leq c |p|_1 + c h^{-1} \| D(S_h p - p) + D(p - p_h) \|_{-1,h;\Omega} \]
\[\leq c |p|_1 + c h^{-1} \sup_{v_h \in X_h} \frac{(Dv_h, D(u - u_h))}{|v_h|_1} \]
\[\leq c(|p|_1 + |u|_2). \]
Dual problem has no locally balanced flow:

\[(D\omega, D\phi) + (\text{div} \phi, q) = 0 \quad \forall \phi \in X,\]

\[(\text{div} \omega, \psi) = (p - p_h, \psi) \quad \forall \psi \in Y.\]

standard computation using approximation operators yields:

\[\|p - p_h\|_2^2 \leq (\text{div}(\omega - \Pi_h \omega), p - p_h) + (D(u - u_h), D\Pi_h \omega)\]

\[\leq |\omega - \Pi_h \omega|_1 \cdot \|D(p - p_h)\|_1 + \]

\[+ (D(u - u_h), D(\Pi_h \omega - \omega)) + (\text{div}(u - u_h), q - S_h q)\]

\[\leq c \left(|\omega - \Pi_h \omega|_1 + \|D(q - S_h q)\|_1 \right) \left(|u - u_h|_1 + \|D(p - p_h)\|_1 \right)\]

\[\leq c c_R^2 h^2 \left(|p|_1^2 + |u|_2^2 \right)\]
L²-Error Bound and LBB-friendly Methods

\[\| p - p_h \| \leq c c_R h (|p|_1 + |u|_2) \]

- partial improvement depending on the domain
- Idea for further improvement:
 - use discrete solution \((\omega_h, q_h)\) instead of \(\Pi_h q, S_h q\)
 \[
 \| p - p_h \|^2 \leq c \left(|\omega - \omega_h|_1 + \|D(q - q_h)\|_{-1} \right) \times \\
 \times \left(|u - u_h|_1 + \|D(p - p_h)\|_{-1} \right)
 \]
 - use LBB-friendly FE approximation

- \(L^2\)-pressure error independent of \(L\) if

\[
|u - u_h|_1 + \|D(p - p_h)\|_{-1} \leq c h (\|f\| + \|g\|_1)
\]

is independent of \(L\) for arbitrary right-hand side \((f, g)\)
very bad case models free channel flow with zero-boundary

Subtract free flow solution $\tilde{u}_{0,h}(y)$ from original problem to roughly achieve locally balanced flow!

What to subtract in complex configurations?

Idea: Let the FEM do the job!
Advice: Choose FEM such that the FE space contains a free flow solution which corresponds to a Stokes problem with right-hand side \((\tilde{f}, \tilde{g})\) and \(\tilde{g}\) satisfying

\[
\int_{\Omega} (g - \tilde{g}) dx = 0
\]

- Example: FEM does subtraction automatically if free flow solution is an element of FE space (e.g. Mini-Element)

- Take care of stabilization terms:

\[
(div \, u_h, q_h) - \sum_{\Lambda} c_{\Lambda} \mu(\Lambda) \int_{\Lambda} (f - Dp_h) Dq_h dx = (g, q_h)
\]
Worst Case

\[
|u - u_h|_1 + \|D(p - p_h)\|_\infty \leq c c_{Du} (\|f\| + |g|_1) \\
\|u - u_h\| \leq c c_{Du} (\|f\| + |g|_1) \\
\|p - p_h\| \leq c c_{Rc_{Du}} (\|f\| + |g|_1) \\
\Rightarrow \ c_{Rc_{Du}} \text{ instead of } \frac{1}{L^2}
\]

Locally-balanced flow & LBB-friendly Methods

1. locally balanced flow \(\Rightarrow \ c_{Du} \text{ independent of } L \\
2. appropriate method \(\Rightarrow \ c_{R} (\text{almost}) \text{ independent of } L \\

😊 All error bounds (almost) independent of LBB constant \(L \)!
Thanks to

... Prof. M. Dobrowolski for his cooperative supervision of my diploma thesis,

... the Graduate School in Advanced Optical Technologies (SAOT, Erlangen) for funding my participation at this symposium,

... **you** for your attention!