High Performance Multigrid on Current Large Scale Parallel Computers

Tobias Gradl, Ulrich Rüde

Lehrstuhl für Systemsimulation
Universität Erlangen-Nürnberg

2008-02-26
Outline
Multigrid
The HHG Framework
Performance
Adaptive Mesh Refinement

Multigrid

The HHG Framework

Performance

Adaptive Mesh Refinement
What is Multigrid?

- Has nothing to do with Grid computing

- General methodology: respect the different scales of a problem

- Useful e.g. for solving elliptic PDEs
 - convergence rate independent of problem size
 - asymptotically optimal complexity \Rightarrow algorithmic scalability
 - efficient parallelization — if one knows how to do it
Multigrid: V-Cycle

Goal: solve $A^h u^h = f^h$ using a hierarchy of grids

- **Relax** on $A^h u^h = f^h$
- **Residual** $r^h = f^h - A^h u^h$
- **Restrict** $f^H = I_H^h r^h$
- **Solve** $A^H u^H = f^H$ by recursion
- **Interpolate** $e^h = I_H^h u^H$
- **Correct** $u^h \leftarrow u^h + e^h$
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!

⇒ same stencil for all points within a patch
Combining FE and MG: not straightforward

FE: mesh may be unstructured.
MG: what nodes to remove for coarsening?

Hierarchical Hybrid Grids start with the coarse grid!

⇒ same stencil for all points within a patch
HHG properties

Advantages

- Multigrid is straightforward
- Very memory efficient
 10^{11} unknowns are possible
- Very fast

Limitation

- Coarse input mesh needed
HHG on parallel computers

Mesh is split up at **coarsest level**
→ Vertices, Edges, Faces, Volumes

Facilitates parallelization for **message passing** infrastructures
(distributed memory parallel computers)
The HHG Framework

Performance

Adaptive Mesh Refinement

Testing on HLRB II

HLRB II at Leibniz-Rechenzentrum München

- 9728 CPUs (1.6 GHz Intel Itanium 2)
- 56.5 Tflop/s peak performance (rank 15 on TOP500 list)
- 38 Tbytes of main memory
Performance on HLRB II

| Processors | Unknowns ($\times 10^6$) | Avg. time per V-cycle (sec) | Time to solution ($|| r || < 10^{-6} \cdot || r_0 ||$) |
|------------|-------------------------|----------------------------|---|
| 64 | 2 147.5 | 4.93 | 59.2 |
| 504 | 16 911.4 | 5.44 | 65.3 |
| 2040 | 68 451.0 | 5.60 | 67.2 |
| 4080 | 136 902.1 | 5.68 | 68.2 |
| 6120 | 205 353.1 | 6.33 | 76.0 |
| 8152 | 273 535.7 | 7.43 * | 89.2 |
| 9170 | 307 694.1 | 7.75 * | 93.0 |

*: including high-density partitions

Exploring other computer architectures

DEISA*: Access to Europe’s largest computers, support with “enabling work”.

Project: Test HHG on a variety of architectures
- Summer 2008
- 100,000 CPU hours
- Combine with application

* Distributed European Infrastructure for Supercomputing Applications
Adaptive refinement: motivation

Varying mesh density required by

- geometry (e.g. walls of a room)
Adaptive refinement: motivation

Varying mesh density required by

- geometry (e.g. walls of a room)
- physics (e.g. singularities)
Two approaches

- Red-green → conforming grids
Two approaches

- Red-green → conforming grids

Tobias Gradl, Ulrich Rüde

High Performance Multigrid on Current Large Scale Parallel Computers
Two approaches

- Red-green → conforming grids
Two approaches

- Red-green → conforming grids

- Hanging nodes → non-conforming grids
Two approaches

- Red-green → conforming grids
 - Diagram showing conforming grids with red and green lines.

- Hanging nodes → non-conforming grids
 - Diagram showing non-conforming grids with hanging nodes.
Comparison: red-green vs. hanging nodes

Both have (dis-)advantages (some of them HHG specific):

- Red-green: impossible for purely quadrilateral/hexahedral grids
- Hanging nodes: too large refined areas
- Red-green: more elements on coarsest level

The ideal HHG grid has few coarse level elements.
⇒ Use refinement with hanging nodes whenever possible.
Mathematical foundation

Unknows:

\[(u^h)_i = (l^h_i u^h_i)_i \quad \text{for } h < h_i, \quad i = 1..n\]

Residual:

\[A^H u^H = f^H \quad \text{solved up to discretization error} \quad \iff \quad r^H = 0\]

\[r^h = f^h - A^h u^h = f^h - A^h (l^h_H u^H)\]

\[r^H = l^H r^h = 0\]
Refinement with hanging nodes in HHG

\[Au = f, \quad r = f - Au, \quad \text{compact basis functions} \]
Refinement with hanging nodes in HHG

\[Au = f, \ r = f - Au, \] compact basis functions

Uniform refinement: only one boundary layer
Refinement with hanging nodes in HHG

\[Au = f, \quad r = f - Au, \] compact basis functions

Uniform refinement: only one boundary layer

Adaptive refinement: two boundary layers
Refinement with hanging nodes in HHG

\[Au = f, \ r = f - Au, \] compact basis functions

Uniform refinement: only one boundary layer

Adaptive refinement: two boundary layers

1. Smooth \(u \)
Refinement with hanging nodes in HHG

\[Au = f, \quad r = f - Au, \] compact basis functions

Uniform refinement: only one boundary layer

Adaptive refinement: two boundary layers

1. Smooth \(u \)
2. Compute & restrict \(r \)
Implementation

Become flexible, but stay fast.

- Preserve structured regions ...or at least...
- Treat unstructured regions efficiently.
- Avoid additional communication ...or at least...
- Preserve communication locality.

Work in progress...
Thank you for your attention!
Any questions?