Towards Direct Numerical Simulation of a Billion Fully Resolved Rigid Bodies Immersed in a Fluid

Klaus Iglberger, Jan Götz, Ulrich Rüde
University Erlangen/Nuremberg - Chair for System Simulation (LSS)
Overview:

Contents

- Motivation
- waLBerla: A Software Framework for CFD
- pe: A Rigid Body Simulation Framework
- Coupling CFD and Rigid Bodies
- Results
Overview: Contents

- Motivation
- waLBerla: A Software Framework for CFD
- pe: A Rigid Body Simulation Framework
- Coupling CFD and Rigid Bodies
- Results
Motivation: Large-Scale Particulate Flow Simulations
Motivation: Fluidization Experiment
Motivation: Large-Scale Particulate Flow Simulations
Motivation: Large-Scale Particulate Flow Simulations

- Transport of granular particles is crucial for
 - Understanding of physical phenomena
 - Industrial processes
- Current paradigm in the simulation of particulate flows: Simulation of the immersed particles as point masses
Motivation: Large-Scale Particulate Flow Simulations

- Transport of granular particles is crucial for
 - Understanding of physical phenomena
 - Industrial processes

- Current paradigm in the simulation of particulate flows:
 Simulation of the immersed particles as point masses

- Need for a paradigm change in order to make decisive progress in the modeling and simulation of particulate flows

 Simulation of particles as fully resolved entities
Motivation: Large-Scale Particulate Flow Simulations

- Transport of granular particles is crucial for
 - Understanding of physical phenomena
 - Industrial processes

- Current paradigm in the simulation of particulate flows:
 Simulation of the immersed particles as point masses

- Need for a paradigm change in order to make decisive progress in the modeling and simulation of particulate flows
 Simulation of particles as fully resolved entities

- Demand on increased efforts to tackle the growing complexities (physics and software design)

- Requirement to develop software and tools for the next generation of supercomputers ($>10^6$ execution units)
Motivation: Large-Scale Particulate Flow Simulations
Motivation

waLBerla: A Software Framework for CFD

pe: A Rigid Body Simulation Framework

Coupling CFD and Rigid Bodies

Results
walBerla: A Software Framework for CFD

WALBErla

(c) creative commons - flickr - pizzy
waLBerla: A Software Framework for CFD

Widely Applicable Lattice Boltzmann from Erlangen

- Massively parallel CFD software framework based on Lattice Boltzmann Method
- Modular software concept
 - Supports various applications
 - Blood flow in aneurysms
 - Moving particles and agglomerates
 - Free surfaces to simulate foams, fuel cells, and m.m.
 - Charged colloids
 - Arbitrary combinations of above
- Integration of highly efficient and specialized kernels
waLBerla: A Software Framework for CFD

Best paper award ParCFD 2009: S. Donath, "A Parallel Free Surface Lattice Boltzmann Method for Large-Scale Applications"

Accepted for publication at SC’10: J. Götz, K. Iglberger, “Direct Numerical Simulation of Particulate Flows on 294912 Processor Cores”

Montag, 28. Juni 2010
Overview: Contents

Motivation

waLBerla: A Software Framework for CFD

pe: A Rigid Body Simulation Framework

Coupling CFD and Rigid Bodies

Results

Montag, 28. Juni 2010
A Rigid Body Simulation Framework

- Software infrastructure for rigid body simulation algorithms (DEM, RBD, ...)
- Focus on massively parallel rigid body simulations
Example 1: The Silo Scenario

27270 randomly generated, non-spherical particles, 256 CPUs, 379300 time steps, runtime: 16.4h (including data output), 0.154s per time step

Montag, 28. Juni 2010
Example 1: The Silo Scenario

27270 randomly generated, non-spherical particles, 256 CPUs, 379300 time steps, runtime: 16.4h (including data output), 0.154s per time step
Example 1: The Silo Scenario

27270 randomly generated, non-spherical particles, 256 CPUs, 379,300 time steps, runtime: 16.4h (including data output), 0.154s per time step.
Example 1: The Silo Scenario

Domain partitioning for 64 processes used in the silo scenario
Distributed Rigid Body Simulations

- No point masses, but volumetric and geometrically defined objects
- Objects may (geometrically) span several processes
- Objects overlapping processes boundaries must be synchronized
- Objects are assigned logically with exactly one process
The Parallel FFD Algorithm: Algorithm Formulation

1. Force synchronization
2. for each body \(B \) do
 3. first position half step
 4. first velocity half step
 5. end
3. Update of remote and notification of new rigid bodies
4. for each body \(B \) do
 5. find all contacts \(C(B) \)
 6. for each violated contact \(k \) in \(C(B) \) do
 7. add collision and friction constraints to \(B \)
 8. end
 9. end
10. Exchanging constraints on the rigid bodies
11. for each body \(B \) do
12. if \(B \) has constraints then
13. find post-collision velocity
14. select friction response
15. end
16. else
17. second velocity half-step
18. end
19. second position half-step
20. end
21. Update of remote and notification of new rigid bodies

The Parallel FFD Algorithm: Scaling Results

<table>
<thead>
<tr>
<th># Cores</th>
<th># Particles</th>
<th>Partitioning</th>
<th>Runtime [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>20000000</td>
<td>8 x 4 x 4</td>
<td>727.096</td>
</tr>
<tr>
<td>256</td>
<td>40000000</td>
<td>8 x 8 x 4</td>
<td>726.991</td>
</tr>
<tr>
<td>512</td>
<td>80000000</td>
<td>8 x 8 x 8</td>
<td>727.15</td>
</tr>
<tr>
<td>1024</td>
<td>160000000</td>
<td>16 x 8 x 8</td>
<td>727.756</td>
</tr>
<tr>
<td>2048</td>
<td>320000000</td>
<td>16 x 16 x 8</td>
<td>727.893</td>
</tr>
<tr>
<td>4096</td>
<td>640000000</td>
<td>16 x 16 x 16</td>
<td>728.593</td>
</tr>
<tr>
<td>8192</td>
<td>1280000000</td>
<td>32 x 16 x 16</td>
<td>728.666</td>
</tr>
<tr>
<td>16384</td>
<td>2560000000</td>
<td>32 x 32 x 16</td>
<td>728.921</td>
</tr>
<tr>
<td>32768</td>
<td>5120000000</td>
<td>32 x 32 x 32</td>
<td>729.094</td>
</tr>
<tr>
<td>65536</td>
<td>10240000000</td>
<td>64 x 32 x 32</td>
<td>728.674</td>
</tr>
<tr>
<td>131072</td>
<td>20480000000</td>
<td>64 x 64 x 32</td>
<td>728.32</td>
</tr>
</tbody>
</table>

Jugene simulation results of 1000 time steps of a dense granular gas contained in an evacuated box without external forces.
Example 2: The Hourglass Scenario

1,250,000 spherical particles, 256 CPUs, 300,300 time steps, runtime: 48h (including data output)
Example 2: The Hourglass Scenario

1250 000 spherical particles, 256 CPUs, 300 300 time steps, runtime: 48h (including data output)
Example 2: The Hourglass Scenario

1,250,000 spherical particles, 256 CPUs, 300,300 time steps, runtime: 48h (including data output)
Example 2: The Hourglass Scenario

1,250,000 spherical particles, 256 CPUs, 300,300 time steps, runtime: 48 h (including data output)
Overview: Contents

- **Motivation**
- **waLBerla: A Software Framework for CFD**
- **pe: A Rigid Body Simulation Framework**
- **Coupling CFD and Rigid Bodies**
- **Results**
Example 3: Fluidization of Spherical Particles

23,985 spherical particles, $7.68 \cdot 10^6$ Cells (400x400x480), 512 CPUs, 252,000 time steps, runtime: 30 h, 0.43 s per time step
Example 3: Fluidization of Spherical Particles

- 23985 spherical particles, \(7.68 \times 10^6\) Cells (400x400x480), 512 CPUs, 252,000 time steps,

 runtime: 30h, 0.43s per time step
Example 4: Fluidization of Non-spherical Particles

1008 spheres and 900 capsules, $12.8 \cdot 10^6$ Cells (180x198x360), 512 CPUs, 210,000 time steps, runtime: 7.5 h, 0.128 s per time step
Example 4: **Fluidization of Non-spherical Particles**

1008 spheres and 900 capsules, \(12.8 \cdot 10^6\) Cells (180x198x360), 512 CPUs, 210,000 time steps, runtime: 7.5 h, 0.128 s per time step
Overview:

Contents

- Motivation
- waLBerla: A Software Framework for CFD
- pe: A Rigid Body Simulation Framework
- Coupling CFD and Rigid Bodies
- Results
Segregation simulation of $242 \, 200$ spherical particles on $32 \, 768$ cores.
Largest simulation within the weak scaling experiment: $150 \cdot 10^9$ fluid cells and $264 \cdot 10^6$ spherical particles on $294 \, 912$ cores.

Two test scenarios:
- Test case A: 6.3% fraction of particle volume
- Test case B: 19.8% fraction of particle volume
Results: Weak Scaling Results on Jugene

Weak Scaling Testcase A

Efficiency

Number of Cores

40x40x40 lattice cells per core
80x80x80 lattice cells per core

Montag, 28. Juni 2010
Results: Weak Scaling Results on Jugene

Weak Scaling Testcase B

Efficiency vs Number of Cores

- 40x40x40 lattice cells per core
- 80x80x80 lattice cells per core

Montag, 28. Juni 2010
Results: Weak Scaling Results on Jugene

Weak Scaling Testcase B

Fraction of compute time

LBM Communication
Stream Collide
Object Mapping
Force Evaluation
Physics Engine

Number of cores
Strong Scaling Results on Jugene

<table>
<thead>
<tr>
<th># Cores</th>
<th>Simulation time test case A</th>
<th>Simulation time test case B</th>
<th>Domain size per core</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>362.9</td>
<td>669.8</td>
<td>80 x 80 x 80</td>
</tr>
<tr>
<td>128</td>
<td>177.0</td>
<td>341.4</td>
<td>40 x 80 x 80</td>
</tr>
<tr>
<td>256</td>
<td>95.5</td>
<td>182.3</td>
<td>40 x 40 x 80</td>
</tr>
<tr>
<td>512</td>
<td>51.5</td>
<td>96.1</td>
<td>40 x 40 x 40</td>
</tr>
<tr>
<td>1024</td>
<td>28.6</td>
<td>52.6</td>
<td>20 x 40 x 40</td>
</tr>
<tr>
<td>2048</td>
<td>18.5</td>
<td>31.1</td>
<td>20 x 20 x 40</td>
</tr>
<tr>
<td>4096</td>
<td>12.1</td>
<td>20.0</td>
<td>20 x 20 x 20</td>
</tr>
<tr>
<td>8192</td>
<td>7.6</td>
<td>12.9</td>
<td>10 x 20 x 20</td>
</tr>
<tr>
<td>16384</td>
<td>5.7</td>
<td>8.8</td>
<td>10 x 10 x 20</td>
</tr>
<tr>
<td>32768</td>
<td>4.7</td>
<td>6.9</td>
<td>10 x 10 x 10</td>
</tr>
</tbody>
</table>

Simulation time and domain sizes for 500 time steps of strong scaling of coupled fluid-structure interaction simulations from 64 to 32768 compute cores with scenarios A and B.
Results: Strong Scaling Results on Jugene

Strong Scaling Testcase A

- LBM Communication
- Stream Collide
- Object Mapping
- Force Evaluation
- Physics Engine

Fraction of compute time vs Number of cores
Strong Scaling Results on Jugene

Strong Scaling Testcase B

Fraction of compute time

Number of cores

- LBM Communication
- Stream Collide
- Object Mapping
- Force Evaluation
- Physics Engine
Thank you very much for your attention!