Fast Multigrid Solvers for Long Range Potentials

Dominik Bartuschat, Boston, USA
March 1, 2013

SIAM Conference on Computational Science and Engineering 2013
D. Bartuschat, H. Köstler, U. Rüde

Chair for System Simulation, FAU Erlangen-Nürnberg
Outline

- Motivation
- The waLBerla Simulation Framework
- Charged Particles in Fluid Flow
- Multigrid Solver
- Validation
- Results
Motivation

Simulating agglomeration of charged particles in (micro-)fluid flow on charged plane.

- Industrial applications:
 - Filtering particulates from exhaust gases.
 - Charged particle deposition in cooling systems of fuel cells.

- Medical applications:
 - Deposition of charged aerosol particles in respiratory tract (e.g. drug delivery).
 - Optimization of Lab-on-a-Chip systems:
 - Trapping cells and viruses.
 - Separation of different cells.

© Kang and Li „Electrokinetic motion of particles and cells in microchannels“ Microfluidics and Nanofluidics
Multi-Physics Simulation

Electro (quasi) statics

- Electrostatic force
- Charge density
- Force on ions
- Ion convection

Rigid body dynamics

- Object movement
- Hydrodynamic force

Fluid dynamics
The waLBerla Simulation Framework
waLBerla

- Widely applicable Lattice Boltzmann framework.
- Suited for various flow applications.
- Large-scale, MPI-based parallelization.
- Dynamic application switches for different functionalities and optimization.
waLBerla Concepts

Block concept:
- Domain partitioned into cartesian grid of blocks.
- Blocks can be assigned to different processes.
- Blocks contain:
 - cell data, e.g. electric potential.
 - global information e.g. MPI rank, location.

Communication concept:
- Simple communication mechanism on uniform grids, utilizing MPI.
- Ghost layers to exchange cell data with neighboring blocks.

Sweep concept:
- Sweeps are work steps of a time-loop, performed on block-parallel level.
- Example: MG sweep, contains sub-sweeps (restriction, prolongation, smoothing).
Charged Particles in Fluid Flow
Lattice Boltzmann Method

\[f_i(\bar{x} + \bar{c}_i \Delta t, t + \Delta t) - f_i(\bar{x}, t) = -\frac{1}{\tau}(f_i - f_i^{eq}). \]

- Discrete lattice Boltzmann equation (single relaxation time).
- Domain discretized in cubes (cells).
- Discrete velocities \(\bar{c}_i \) and associated distribution functions \(f_i \) per cell.

D3Q19 model
Stream-Collide

The equation is solved in two steps:

- **Stream step**
 \[f_i(\bar{x} + \bar{c}_i \Delta t, t + \Delta t) = \tilde{f}_i(\bar{x}, t + \Delta t) \]

- **Collide step**
 \[\tilde{f}_i(\bar{x}, t + \Delta t) = f_i(\bar{x}, t) - \frac{1}{\tau}(f_i - f_i^{eq}) \]
Fluid-Particle Interaction - waLBerla and pe

- Particles mapped onto lattice Boltzmann grid.
- Each lattice node with cell center inside object is treated as moving boundary.
- Hydrodynamic forces of fluid on particle computed by momentum exchange method*.

Poisson Equation and Force on Particles

- Electric potential described by Poisson equation, with particle’s charge density on RHS:

\[-\Delta \Phi(\vec{x}) = \frac{\rho_{\text{particles}}(\vec{x})}{\epsilon_r \epsilon_0}\]

- Discretized by finite volumes.
- Solved with cell-centered multigrid solver.
- Subsampling for computing overlap degree to set RHS accordingly.

- Electrostatic force on particle:

\[\vec{F}_q = -q_{\text{particle}} \cdot \nabla \Phi(\vec{x})\]
Charged Particles Algorithm

foreach time step, do

// solve Poisson equation with particle charge density
set RHS of Poisson equation
while residual too high do
 perform multigrid v-cycle to solve Poisson equation
end

// solve lattice Boltzmann equation considering particle velocities
begin
 perform stream step
 compute macroscopic variables
 perform collide step
end

// couple potential solver and LBM with pe
begin
 apply hydrodynamic force to particles
 apply electrostatic force to particles
 pe moves particles depending on forces
end
Multigrid Solver
Multigrid

- Iterative method for efficient solution of sparse linear systems.

- Based on
 - Smoothing principle: High-frequency error elimination by iterative solvers (e.g. GS).
 - Coarse grid principle: Restriction to coarser grid transforms low-frequency error components to relative higher-frequency ones.
 - Smoothing on coarse grids.
 - Prolongation of obtained correction terms to finer grid.

- Applied recursively, $V(v_{\text{pre}}, v_{\text{post}})$-cycle.
Cell-Centered Multigrid - Implementation

- All operations implemented as compact stencil operations.

- Design goals:
 - Efficient and robust black-box solver.
 - Handling complex boundary conditions on coarse levels.
 - Naturally extensible to jumping coefficients.

 ➡ Method of choice: Galerkin coarsening.

- (FV) Stencils stored for each unknown.
- On finest level: quasi-constant stencils.

- Averaging restriction, constant prolongation.
 - Preserves D3Q7 stencil on coarse grids.
 - Convergence rate deteriorates.
 - Workaround for Poisson problem: Overrelaxing prolongation*

Validation
Validation of Electric Potential

Analytical solution for homogeneously charged particle:

\[
\Phi(\vec{x}) = \begin{cases}
\frac{1}{4\pi\varepsilon} \cdot \frac{Q}{|\vec{x}|} & \text{for } |\vec{x}| \geq R \\
\frac{1}{4\pi\varepsilon} \cdot \frac{Q}{2R} \left(3 - \left(\frac{|\vec{x}|}{R}\right)^2\right) & \text{for } |\vec{x}| < R
\end{cases}
\]

Particle in 256\(^3\) domain
- MG: 5 V(2,2)-cycles.
- Dirichlet BCs: exact solution.
- Relative error: in order of 10\(^{-3}\)

- Radius: 60 µm.
- Charge: 8000 \cdot e.
- Subsampling: factor 4.
Validation of Electric Potential

Determination of residual threshold:

Error hardly reduced after residual norm smaller than 10^{-9}

Residual threshold for simulations: $2 \cdot 10^{-9}$
Results
Charged Particles in Fluid Flow

Agglomeration of charged particles on charged plane in water flow.

- Channel: 2.56 x 5.76 x 2.56 mm
 - $D_x = 10 \mu m$, $D_t = 4 \cdot 10^{-5} s$, $\tau = 1.7$
- Particle radius: 60μm
- Inflow velocity: 1 mm/s
- Particle charge: 8000e
- Potential: Bottom -100V, Top 0V
- Other walls: No-slip BCs
- Other walls: homogen. Neumann BCs
- Computed on 144 cores (12 nodes) of RRZE - LiMa
- 71,600 time steps
- 64^3 unknowns per core
- 6 MG levels
Scaling Setup and Environment

Weak scaling:
- **Costant size per core:**
 - 128³ cells.
 - 9.4% moving obstacle cells.
- **Size doubled** (y-dimension).
- **MG** (Residual L_2-Norm $\leq 2 \cdot 10^{-9}$):
 - V(3,3) with 7 levels.
 - 10 to 45 CG coarse-grid iterations.
 - Convergence rate: 0.07.
- 2x4x2 cores per node.

Executed on LRZ‘s SuperMUC:
- 9216 compute nodes (thin islands), each:
 - 2 Xeon "Sandy Bridge-EP" chips @2.7 GHz,
 - 32 GB DDR3 RAM,
 - Infiniband interconnect.
- Currently ranked #6 in TOP500.
Single Node Performance

Weak scaling (first time-step, size doubled here in different dimensions)

- LBM scales very well.
- MG scales reasonably well.

Highest performance with 16 cores
- used for further scaling experiments.

<table>
<thead>
<tr>
<th>Time loop</th>
<th>LBM</th>
<th>MG - 5 V(3,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10s</td>
<td>0.67s</td>
<td>2.08s</td>
</tr>
</tbody>
</table>

Contact: dominik.bartuschat@fau.de
Weak Scaling for First Time Step

- Parallel efficiency @512 nodes:
 - LBM: 60%
 - MG - 5 V(3,3): 57%

- Reasonably good scaling for both, MG and LBM.
Weak Scaling for 240 Time Steps

- Parallel efficiency @512 nodes:
 - LBM 94 %
 - MG - 1 V(3,3) 59 %

- LBM scales nearly ideally, MG scales reasonably well,
 - MG performance restricted by coarsest-grid solving

8192 cores
1.77M particles

Boston, 01.03.2013 - Dominik Bartuschat - System Simulation Group - Fast Multigrid Solvers for Long Range Potentials (Contact: dominik.bartuschat@fau.de)
Summary

- Parallel multi-physics algorithm for charged particles in fluid flow.
- Cell-centered multigrid with variable stencils for Poisson problem.
- Validation of Poisson problem solution.
- Performance results of main components.
 - Performance evaluation on single (many-core) node.
 - Weak scaling experiments on several nodes.
- Possible MG improvements:
 - Redistribution of coarse grid unknowns / Optimize CG.
 - Higher order prolongation scheme, conserving seven-point stencils.
Thank you for your attention!