An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems

K. Hertel1,2, S. Yan1,2, C. Pflaum1,2, R. Mittra3

kai.hertel@fau.de

1Lehrstuhl für Systemsimulation
Department Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

2School for Advanced Optical Technologies
Friedrich-Alexander-Universität Erlangen-Nürnberg

3Electromagnetic Communication Laboratory
Electrical Engineering Department
Pennsylvania State University

Copper Mountain
March 22nd 2013
Basic Outline

1. Model and Discretization
2. Iterative Solver
3. Extrapolation
4. Numerical Results
Overview of the model problem

- High-frequency Maxwell problem (optical regime, \(2.7 \cdot 10^{14} \text{Hz} < f < 10^{15} \text{Hz},\) \(0.3 \mu m < \lambda < 1.1 \mu m\) resp.)
- Simple box-shaped domain geometries
- Both media of positive and negative permittivities
- Rough interfaces between media
- Periodic and absorbing boundaries (PML)

Figure: Schematic of a multi-junction thin-film silicon solar cell

An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems / Kai Hertel
Overview of the numerical scheme

- Finite Difference Frequency Domain discretization (FDFD)
- Spatial discretization based on Yee cells
- Finite Integration Technique (FIT)
- Explicit leap-frog time stepping scheme
- Algebraically speaking a Richardson method
- Prony’s extrapolation method

Figure: EM field in a solar cell structure
Under model assumptions valid for optical applications (linearity, isotropy and non-dispersivity), Maxwell’s equations can be stated as follows:

- **Faraday’s Law:**
 \[\mu \frac{\partial}{\partial t} H = -\nabla \times E - \sigma^* H \]
 (1)

- **Ampère’s Law:**
 \[\epsilon \frac{\partial}{\partial t} E = \nabla \times H - \sigma E \]
 (2)

- **Gauß’s Law for Electric Fields:**
 \[\nabla \cdot (\epsilon E) = 0 \]
 (3)

- **Gauß’s Law for Magnetic Fields:**
 \[\nabla \cdot H = 0 \]
 (4)
In a time-harmonic setting of (1),(2), we seek a solution:

\[H(\xi,t) = \hat{H}(\xi) \exp(i\omega t) \]
\[E(\xi,t) = \hat{E}(\xi) \exp(i\omega t) \]

Therefore, the problem with source terms \(S_{\hat{E}}, S_{\hat{H}} \) of frequency \(\omega \) can be stated as: Find \((\hat{H}, \hat{E})\) that satisfies:

\[i\omega \mu(\xi) \hat{H}(\xi) = -\nabla \times \hat{E}(\xi) - \sigma^*(\xi) \hat{H}(\xi) + \mu(\xi) S_{\hat{H}}(\xi) \]
\[i\omega \epsilon(\xi) \hat{E}(\xi) = \nabla \times \hat{H}(\xi) - \sigma(\xi) \hat{E}(\xi) + \epsilon(\xi) S_{\hat{E}}(\xi) \]

with \(\xi \in \Omega \subset \mathbb{R}^3 \) a box-shaped domain.
After discretization in time and space (FDFD, Yee cells, explicit leap-frog), we get the following iterative scheme:

\[
\frac{\mu}{\tau} \left(\alpha^2 \hat{H}^{k+1} - \hat{H}^k \right) = -\alpha \nabla_h \times \hat{E}^k - \frac{\sigma^*}{2} \left(\hat{H}^k + \alpha^2 \hat{H}^{k+1} \right) + \mu S \hat{H}
\]

\[
\frac{\varepsilon}{\tau} \left(\alpha^2 \hat{E}^{k+1} - \hat{E}^k \right) = \alpha \nabla_h \times \hat{H}^{k+1} - \frac{\sigma}{2} \left(\hat{E}^k + \alpha^2 \hat{E}^{k+1} \right) + \varepsilon S \hat{E}
\]

for time steps \(\tau > 0 \), where

\[
\alpha := \alpha(\tau) = \exp \left(i\omega \frac{1}{2\tau} \right)
\]

and

\[
H^k(\xi, k\tau) = \hat{H}^k(\xi)\alpha^{2k}, \quad E \left(\xi, \frac{2k + 1}{2\tau} \right) = \hat{E}^k(\xi)\alpha^{2k+1}
\]

\[
H \left(\xi, \frac{2k + 1}{2\tau} \right) \approx \frac{1}{2} \alpha^{2k} \left(\hat{H}^k(\xi) + \alpha^2 \hat{H}^{k+1}(\xi) \right)
\]
Introduce a local modification to the iteration scheme (THIIM) to deal with instabilities in media of negative permittivity $\varepsilon < 0$:

$$\frac{\varepsilon}{\tau} \left(\alpha^2 \hat{E}^k - \hat{E}^{k+1} \right) = \alpha \nabla_h \times \hat{H}^{k+1} - \frac{\sigma}{2} \left(\alpha^2 \hat{E}^k + \hat{E}^{k+1} \right) + \varepsilon S \hat{E}$$

This yields a sparse system matrix consisting of blocks of the following kind:

$$M := \begin{pmatrix}
\frac{2\mu - \tau \sigma^*}{\alpha^2 (2\mu + \tau \sigma^*)} & \frac{-2\tau}{\alpha (2\mu + \tau \sigma^*)} & \nabla_h \\
\frac{2\tau}{\alpha (2\varepsilon + \tau \sigma)} & \frac{2\mu - \tau \sigma^*}{\alpha^2 (2\varepsilon + \tau \sigma)} & \nabla_h \\
\frac{2\tau \alpha}{2|\varepsilon| + \tau \sigma} & \frac{2\mu - \tau \sigma^*}{\alpha^2 (2\mu + \tau \sigma^*)} & \nabla_h \\
\end{pmatrix}$$

with eigenpairs $(\lambda_m, e_m), \|e_m\| = 1, |\lambda_m| < 1 \forall m$ for $0 < \tau$ sufficiently small and

$$M(\tau) = \sum_m e_m \lambda_m e_m^T \xrightarrow{\tau \to 0} \text{Id}.$$
Define algebraic state variables and load vectors:

\[x^k := \left(\hat{H}^k, \hat{E}^k \right)^T = \left(\hat{H}^k, \hat{E}^k \bigg|_{\varepsilon > 0}, \hat{E}^k \bigg|_{\varepsilon < 0} \right)^T, \quad b := \tau \left(S_{\hat{H}}, S_{\hat{E}} \right)^T \]

and restate the discretized time-harmonic Maxwell problem:
Find a solution \(x^* = (\hat{H}, \hat{E})^T \subseteq \mathbb{R}^d \) such that:

\[x^* = M x^* + b \]

or equivalently: Solve the system

\[(\text{Id} - M) x^* = b \]
Explicit FDFD iteration scheme:

\[
x^0 = 0
\]

\[
x^{k+1} = M x^k + b = \sum_{\kappa=0}^{k-1} M^\kappa b
\]

converges slowly\(^2\). Approximation error:

\[
x^* - x^k = M (x^* - x^{k-1}) = M^k (x^* - x^0) = M^k x^* = \sum_{\kappa=k}^{\infty} M^\kappa b
\]

\(^2\)Recall the corresponding Neumann series: \(\sum_{\kappa=0}^{\infty} M^\kappa = (\text{Id} - M)^{-1}\)
High iteration numbers (typically \(10^4 - 10^6\)) to convergence up to a suitable prescribed tolerance

Figure: Transient signal and iterations to convergence up to a tolerance of \(10^{-4}\)
How to speed up convergence?

\[x^{k+1} - x^k = M^k b = \sum_m e_m \lambda_m^k e_m^T \]

Idea: Use low order model to capture the (few) dominant eigenvalue contributions of the system matrix to the iterates.

\[M \approx \sum_{m \in \{ n \in \mathbb{N} : |\lambda_n| > \theta \}} e_m \lambda_m^k e_m^T \]

Problem: How to get an estimate of the dominant eigenpairs (or their effect on given iterates)?

Approach: Use an extrapolation method based on component-wise samples of successive iterates

Pros: Allows for observation of oscillatory behavior caused by resonant modes.

Cons: Decouples the degrees of freedom.
Step 1: Establish dependence of iterates on previous iterates

\[P_s := \begin{pmatrix} x_s^{k_l} & x_s^{k_{l-1}} & \cdots & x_s^{k_1} \\ x_s^{k_{l+1}} & \cdots & \cdots & x_s^{k_2} \\ \vdots & \cdots & \cdots & \vdots \\ x_s^{k_{n-1}} & x_s^{k_{n-2}} & \cdots & x_s^{k_{n-l}} \end{pmatrix}, \quad u := \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_l \end{pmatrix}, \quad r_s := \begin{pmatrix} -x_s^{k_{l+1}} \\ -x_s^{k_{l+2}} \\ \vdots \\ -x_s^{k_n} \end{pmatrix} \]

We solve for \(u \):

\[P_s u = r_s \]

Equivalent to:

\[\sum_{m=0}^{l} u_m x_s^{k_{t-m}} = 0 \quad \forall t = l + 1 \ldots n, \text{ where } u_0 = 1 \quad (5) \]
Step 2: Exponential basis

- Represent \(x_s^k \) as linear combination of exponentials \(z^k = \exp(i f k) \)

- Complex-valued \(f \) relates to frequency (\(\text{Re} f \)) and attenuation (\(-\text{Im} f \))

Determine roots \(\{ z_m : p(z_m) = 0 \} \) of:

\[
p(z) = 1 + \sum_{m=1}^{l} u_m z^{l+1-m}
\] \((6) \)

Roots \(z_m = \exp(i f_m) \) represent distinct frequencies of the system (as detected in the respective degree of freedom \(s \) corresponding to some spatial position \(\xi \in \Omega \)).
Step 3: Determine amplitudes

\[Q_s := \begin{pmatrix} z_{k1}^1 & z_{k1}^2 & \cdots & z_{k1}^l \\ z_{k2}^1 & \cdots & \cdots & z_{k2}^l \\ \vdots & \ddots & \ddots & \vdots \\ z_{kn}^1 & z_{kn}^2 & \cdots & z_{kn}^l \end{pmatrix}, \quad a := \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_l \end{pmatrix}, \quad w_s := \begin{pmatrix} x_{s1}^{k_1} \\ x_{s2}^{k_2} \\ \vdots \\ x_{sn}^{k_n} \end{pmatrix} \]

- Denote iterates \(x_{s}^{k_t} \) as a superposition of frequencies:

\[x_{s}^{k_t} = \sum_{m=1}^{l} a_m \exp(ift) \]

- Solve system to get corresponding amplitudes:

\[Q_s a = w_s \]

- Filter amplitude-frequency pairs to get behavior for \(t \to \infty \)
Remarks

- *System generally overdetermined* \((n \geq 2l)\)
- *Solve in the least squares sense*
- *Leads to singular value decomposition (SVD)*
- *Minimizes:*
 \[
 \|P_s u - r_s\|_2 = \inf_{v \in \mathbb{R}^l} \|P_s v - r_s\|_2 \tag{7}
 \]
 \[
 \|Q_s a - w_s\|_2 = \inf_{v \in \mathbb{R}^l} \|Q_s v - w_s\|_2 \tag{8}
 \]
- *Numerically robust*
Typical distribution of amplitude and frequency pairs as determined by Prony’s method

Figure : The signal’s frequency-amplitude pairs (abs)

Stabilization: Attenuation \(a = -\text{Im} f \). Discard frequencies with \(a > \varepsilon \), assume that frequencies \(a \leq \varepsilon \) are 0.
Convergence of a single degree of freedom:

![Error: Iterated vs extrapolated signal](image)

Order 6 extrapolation error vs iterative error, filter by frequency, 0.97 frequencies used on average

Figure: Error: Iterated vs extrapolated signal

An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems / Kai Hertel
Convergence of the whole simulation domain:

Figure: $\|\cdot\|_2$ Error: Iterated vs extrapolated signal

An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems / Kai Hertel
Numerical Results

Figure: Experimental and simulation results

An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems / Kai Hertel
An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems / Kai Hertel

Figure: Absorption for smooth and rough interfaces

Figure: Quantum efficiency under different angles of incidence
An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems / Kai Hertel
Summary

- Explicit iteration scheme for high-frequency Maxwell problems
- Stable for negative permittivity
- Extrapolation reduces error

Future work

- How to improve the extrapolation accuracy? (e.g. by choice of better samples)
- Can a hierarchical basis approach reduce local inaccuracies?
- What about the divergence of the extrapolated signal? (a constraint in the original system of PDEs)
- How to make use of multigrid methods?
Thank you for your attention.

References:

- A. Taflove, S. Hagness: Computational Electrodynamics, Artech House, 2005