Ultrasound Simulations of Non-smooth Granular Dynamics

Ulrich Rüde (LSS Erlangen, ulrich.ruede@fau.de)
joint work with T. Preclik and D. Bartuschat
Lehrstuhl für Simulation
Erlangen-Nürnberg

Barcelona, September 29, 2015
fully resolved geometry - hard particles - ultra-parallel

864 000 sharp-edged particles with a diameter between 0.25 mm and 2 mm.
Outline

- Motivation
- Supercomputers
- Towards the **direct simulation** of Particulate Flows
 1. Solid phase - **rigid body dynamics** (multi-body simulation)
 2. Fluid phase - lattice Boltzmann method (meso-sopic model)
 3. Electrostatics - finite volume multigrid (macro-sopic model)

Multi-physics applications
 - Coupling the models
 - Examples

Perspectives
Building Block I:

Current and Future High Performance Supercomputers
BIG Iron

JUQUEEN
- Blue Gene/Q architecture
- 458,752 PowerPC A2 cores
- 16 cores (1.6 GHz) per node
- 16 GiB RAM per node
- 5D torus interconnect
- 5.8 PFlops Peak
- TOP 500: #9

SuperMUC
- Intel Xeon architecture
- 147,456 cores
- 16 cores (2.7 GHz) per node
- 32 GiB RAM per node
- Pruned tree interconnect
- 3.2 PFlops Peak
- TOP 500: #20
Building block II:

Granular Media Simulations

with the physics engine

Particle Model

Single particle described by
 - **state variables**
 position x, orientation φ,
 translational and angular velocity v and ω
 - **parameterization of its shape** S
 e.g. geometric primitive, composite object, or mesh
 - **inertia properties**: mass m,
 principle moments of inertia I_{xx}, I_{yy}, and I_{zz}

The Newton-Euler equations for rigid objects

$$
\begin{align*}
\begin{pmatrix}
\dot{x}(t) \\
\dot{\varphi}(t)
\end{pmatrix}
&=egin{pmatrix}
v(t) \\
Q(\varphi(t))\omega(t)
\end{pmatrix} \\
M(\varphi(t))
\begin{pmatrix}
\dot{v}(t) \\
\dot{\omega}(t)
\end{pmatrix}
&=egin{pmatrix}
f(s(t),t) \\
\tau(s(t),t) - \omega(t) \times I(\varphi(t))\omega(t)
\end{pmatrix}
\end{align*}
$$
Contact Representation

A contact is described by
- the contact location \(\hat{x} \),
- the contact normal \(n \),
- and the signed contact distance \(\xi \).

For a pair of particles \((1, 2)\) with convex shapes \(S_1, S_2 \) and associated signed distance functions \(f_1, f_2 \) these can be defined to be

\[
\hat{x} = \arg \min_{f_2(y) \leq 0} f_1(y), \quad n = \nabla f_2(\hat{x}), \quad \xi = f_1(\hat{x}).
\]
Contact Models (2)

Hard contacts

- require impulses,
- exhibit non-differentiable but continuous trajectories,
- contact reactions are defined implicitly in general,
- have non-unique solutions,
- and can be solved numerically by methods from two classes.

⇒ measure differential inclusions

Time Stepping

• Discretization of the Newton-Euler differential equations:

\[
\begin{pmatrix}
 x'(\lambda) \\
 \varphi'(\lambda) \\
 v'(\lambda) \\
 \omega'(\lambda)
\end{pmatrix} = \begin{pmatrix}
 x \\
 \varphi \\
 v \\
 \omega
\end{pmatrix} + \delta t \begin{pmatrix}
 v'(\lambda) \\
 Q(\varphi)\omega'(\lambda)
\end{pmatrix},
\]

\[
\begin{pmatrix}
 v'(\lambda) \\
 \omega'(\lambda)
\end{pmatrix} = \begin{pmatrix}
 v \\
 \omega
\end{pmatrix} + \delta t M(\varphi)^{-1} \begin{pmatrix}
 f(\lambda) \\
 \tau(\lambda) - \omega \times I(\varphi)\omega
\end{pmatrix}.
\]

• Expression for the relative contact velocity:

\[
\delta v'(\lambda) = v'_1(\lambda) + \omega'_1(\lambda) \times (\hat{x} - x_1) - v'_2(\lambda) - \omega'_2(\lambda) \times (\hat{x} - x_2)
= A^T A \lambda - A^T b.
\]
Frictional contact models for rigid objects

<table>
<thead>
<tr>
<th>Non-penetration conditions</th>
<th>Coulomb friction conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi \geq 0 \perp \lambda_n \geq 0)</td>
<td>(| \lambda_{to} |_2 \leq \mu \lambda_n)</td>
</tr>
<tr>
<td>(\dot{\xi} = 0)</td>
<td>(| \delta v_{to}^+ |2 \lambda{to} = -\mu \lambda_n \delta v_{to}^+)</td>
</tr>
<tr>
<td>(\dot{\xi}^+ \geq 0 \perp \lambda_n \geq 0)</td>
<td>(| \Lambda_{to} |_2 \leq \mu \Lambda_n)</td>
</tr>
<tr>
<td>(\ddot{\xi} = 0)</td>
<td>(| \delta v_{to}^+ |2 \Lambda{to} = -\mu \Lambda_n \delta v_{to}^+)</td>
</tr>
<tr>
<td>(\dot{\xi}^+ \geq 0 \perp \lambda_n \geq 0)</td>
<td>(| \lambda_{to} |_2 \leq \mu \lambda_n)</td>
</tr>
</tbody>
</table>

Signorini condition
impact law
friction cone condition
frictional reaction opposes slip

Coulomb solutions are not unique: new maximum dissipation friction model
Parallel Computation

Key features of the parallelization:

- domain partitioning
- distribution of data
- synchronization protocol
- subdomain NBGS
- accumulators and corrections
- aggressive message aggregation
- nearest-neighbor communication
Parallel solution

- Subdomain Non-linear Block Gauss-Seidel (NBGS).
- Subsystem solver
 - relaxes single contacts F_j^{-1}
- Data dependencies to other processes updated asynchronously (Jacobi)
- Parallel: two message exchanges per iteration
 - Send velocity corrections from shadow copies to owner.
 - Send velocity corrections to shadow copies

Matrix-free implementation avoids the explicit setup of F

Communication of velocity corrections instead of contact reactions avoids exchange of contact data
Dense granular channel flow with crystallization
Scaling and Efficiency Results

- Solver algorithmically not optimal for dense systems, hence cannot scale unconditionally, but highly efficient in many cases of practical importance
- Strong and weak scaling results for a constant number of iterations performed on SuperMUC and Juqueen
- Largest ensembles computed
 - 2.8×10^{10} non-spherical particles
 - 1.1×10^{10} contacts
- granular gas: scaling results

Breakup up of compute times on Erlangen RRZE Cluster Emmy

- "Scalability" alone would not mean that the method is fast!

Granular Dynamics - Ulrich Rüde
Multi-Physics Simulations for Particulate Flows

Parallel Coupling with waLBerla and PE

sedimenting elongated particles with D. Bartuschat and K. Gustavsson (Stockholm)
Fluid-Structure Interaction
direct simulation of Particle Laden Flows (4-way coupling)

Heterogenous CPU-GPU Simulation

Fluidized Beds:

Direct numerical simulation
fully resolved particles

Fluid-structure-interaction

4-way-coupling

Particles: 31250, Domain: 400x400x200, Timesteps: 400 000
Devices: 2 x M2070 + 1 Intel „Westmere“, Runtime: 17.5 h

Conclusions and Perspectives

- Supercomputer power
- Versatile and efficient parallel tools
 - Lattice Boltzmann (for flow)
 - **Multibody Dynamics** (NCP based, for particles)
 - Multigrid (for electrostatics)
- Gain insight
 - Multi-Scale
 - Multi-Physics
- Challenges
 - validation
 - software
 - sustainability
Thank you for your attention!

Videos, preprints, slides at
https://www10.informatik.uni-erlangen.de