Massively Parallel Multiphysics Simulations with the waLBerla Software Framework

Dominik Bartuschat, Ulrich Rüde

Garching, Germany
April 27, 2016

SuperMUC Status and Results Workshop 2016
D. Bartuschat, U. Rüde, M. Bauer, C. Godenschwager, F. Schornbaum

Chair for System Simulation, FAU Erlangen-Nürnberg
Outline

- The waLBerla Simulation Framework
- The Lattice Boltzmann Method (LBM)
- Fluid-Particle Interaction for Elongated Particles
- Charged Particles in Fluid Flow
The waLBerla Simulation Framework
waLBerla

- Widely applicable lattice Boltzmann framework
- Suited for various flow applications
- Large-scale, MPI-based parallelization:
 - Domain partitioned into Cartesian grid of blocks, blocks assigned to different processes
 - MPI communication between the blocks, based on ghost layers
- New: Adaptivity and load balancing (for LBM)
Fluid-Particle Interaction with LBM
and tumbling spherocylinders in Stokes flow
Lattice Boltzmann Method

\[f_q(\vec{x}_i + \vec{c}_q dt, t_n + dt) - f_q(\vec{x}_i, t_n) = dt \, C_q (f_q(\vec{x}_i, t_n)) \]

- Discrete lattice Boltzmann equation with collision operator \(\Omega_q = dt \, C_q \)
 Note: two relaxation time (TRT) collision model used for the simulations
- Domain discretized in cubes (cells)
- Discrete velocities \(\vec{c}_q \) and associated distribution functions \(f_q \) per cell

D3Q19 model
Stream-Collide

The equation is solved in two steps:

- **Stream step:**
 \[f_q(\vec{x}_i + \vec{e}_q, t_n + dt) = \tilde{f}_q(\vec{x}_i, t_n) \]

- **Collide step (SRT):**
 \[\tilde{f}_q(\vec{x}_i, t_n) = f_q(\vec{x}_i, t_n) - \frac{1}{\tau} \left(f_q(\vec{x}_i, t_n) - f_{eq}^q(\vec{x}_i, t_n) \right) \]
Hydrodynamic Interactions – 4-Way Coupling

- Particles mapped onto fixed lattice Boltzmann grid
- Each lattice node with cell center inside object is treated as moving boundary
- Hydrodynamic forces of fluid on particle computed by momentum exchange method*

Tumbling Spherocylinders in Stokes Flow

- Tumbling motion of elongated particles in Stokes flow
- Four spherocylinders in periodic domain, aspect ratio \(\frac{1}{\varepsilon} = \frac{\text{length}}{\text{radius}} = 12 \)

LBM simulation validation and comparison against slender body formulation (examining influence of aspect ratio, inertia, wall effects, and particle shape)*

Typical runs on SuperMUC:
1 thin island (8192 cores) for 15 to 48 hrs (70 000 to 605 000 time steps)
Charged Particles in Fluid Flow

for particle-laden electrokinetic flows
Motivation

Separation (or agglomeration) of charged particles in micro-fluid flow, influenced by external electric fields

Medical applications:
- Optimization of Lab-on-a-Chip systems, e.g. separation of different cells
- Deposition of charged aerosol particles in respiratory tract (e.g. drug delivery)

Multiphysics simulation of three mutually coupled phenomena
Charged Particles – 6-Way Coupling

● Long-range electrostatic interactions:
 ● Poisson equation for electrostatic potential, particle charge on right-hand side
 ● Finite volume discretization, solved with cell-centered multigrid in waLBerla
 ● Resulting electrostatic force on particle

\[-\Delta \Phi(\vec{x}) = \frac{q_{\text{particles}}(\vec{x})}{\epsilon_r \epsilon_0}\]

\[\vec{F}_q = -q_{\text{particle}}(\vec{x}) \cdot \nabla \Phi(\vec{x})\]

● Overall coupling:
Simulation Results and Scaling

- Charged particle separation in bisecting micro-channel:

- Weak scaling:
 - Thin islands, 16 cores/node @ 2.5 GHz
 - Constant size per core
 - 128^3 cells
 - 9.4% moving obstacle cells
 - Cell-centered MG:
 - $V(3,3)$ with 7 levels
 - 10 to 45 CG coarse-grid iterations
 - Convergence rate: 0.07
Weak Scaling for 240 Time Steps

Parallel efficiency @2048 nodes:
- Overall: 83 %
- LBM: 91 %
- MG - 1 V(3.3): 64 %

MG performance restricted by coarsest-grid solving

Summary

- SuperMUC used for scaling experiments and productivity runs
- Validation and study of hydrodynamic interactions of elongated particles (4-way coupling)
- Parallel multi-physics algorithm for charged particles in fluid flow (6-way coupling)
- Scaling experiments for charged particles algorithm

- Further simulations on SuperMUC: Validation experiments for electrophoresis of charged particles, including ions (7.5-way coupling)

- We would like to thank

![Irz Logo]
Thank you for your attention!