Simulations of Particle-laden Flows with the Lattice Boltzmann Method

Christoph Rettinger
FAU Erlangen-Nürnberg
Chair for System Simulation
09.03.2016
GAMM Annual Meeting, Braunschweig, 2016
Outline

- The lattice Boltzmann method (LBM)
- Particle coupling algorithms
- Momentum exchange method
- Benchmark: single moving sphere
- Conclusion
The lattice Boltzmann method (LBM)
Classical CFD

velocities (\vec{u}) and pressure (p)

LBM

originates from statistical mechanics

- distribution functions (f_i), corresponding to lattice velocities \vec{c}_i

D2Q9 model

density: $\rho = \sum_i f_i$
momentum: $\rho \vec{u} = \sum_i f_i \vec{c}_i$
LBM equation

\[f_i(\tilde{x} + \tilde{c}_i, t + 1) = f_i(\tilde{x}, t) + \frac{1}{\tau} \left(f_{i}^{eq}(\rho, \tilde{u}) - f_i(\tilde{x}, t) \right) \]

- Meaning: relax the \(f_i \) linearly towards their equilibrium values
- Relaxation parameter \(\tau \) determines the viscosity
- Approximates the Navier-Stokes equations
- Algorithm:

 In each timestep \(t \):
 1. Collide: \(\tilde{f}_i(\tilde{x}, t) = f_i(\tilde{x}, t) + \frac{1}{\tau} \left(f_{i}^{eq}(\rho, \tilde{u}) - f_i(\tilde{x}, t) \right) \)
 2. Stream: \(f_i(\tilde{x} + \tilde{c}_i, t + 1) = \tilde{f}_i(\tilde{x}, t) \)

- Alternatives for improved stability and accuracy:
 - TRT (two relaxation times)
 - MRT (multiple relaxation times)
Collide step

1. Collide: \(\tilde{f}_i(\vec{x}, t) = f_i(\vec{x}, t) + \frac{1}{\tau} \left(f_i^{eq}(\rho, \vec{u}) - f_i(\vec{x}, t) \right) \)
Stream step

2. Stream: $f_i(\tilde{x} + \tilde{c}_i, t + 1) = \tilde{f}_i(\tilde{x}, t)$
Particle coupling algorithms
Overview

- Immersed boundary method [1]
 - Use Lagrangian particles to track the particle’s surface
 - Coupling via body force in cells at particle’s boundary

- Noble-Torczynski method [2]
 - Use information about solid volume fraction of each cell
 - Coupling via special collision term for cells inside particle

- Momentum exchange method [3]
 - Explicitly map body into domain
 - Coupling via boundary conditions

[1]: Peskin – Numerical analysis of blood flow in the heart, 1977
[2]: Noble, Torczynski – A lattice-Boltzmann method for partially saturated computational cells, 1998
[3]: Ladd – Numerical simulation of particulate suspensions via a discretized Boltzmann equation[…], 1994
Momentum exchange method: overview

No-slip boundary condition

Fluid flow simulation on discretized domain (LBM)

[www.walberla.net]

Rigid body simulation (e.g. Discrete Element Method)

Momentum exchange
Particle mapping

- Mark cells inside particle as solid
Particle → Fluid coupling

- No-slip boundary condition:

 \[f_i(\vec{x}, t + 1) = f_i(\vec{x}, t) - 6w_i \rho \vec{u}_p \cdot \vec{c}_i \]

- Reflects distribution function at boundary and adds contribution depending on the particles’ velocity \(\vec{u}_p \)

Alternatives that use exact boundary location information:

- CLI [1]
- Multifreflection [1]
- Etc.

[1]: Ginzburg et al. – Two-relaxation-time lattice Boltzmann scheme: About parameterization, velocity, pressure and mixed boundary conditions, 2008
Fluid → Particle coupling

- Force based on momentum exchange (ME) [1]
 \[
 \vec{F}_i(\vec{x}_b) = f_i(\vec{x}, t) \left[\vec{c}_i - \vec{u}_p\right] - f_i(\vec{x}, t + 1) \left[\vec{c}_i - \vec{u}_p\right]
 \]
- Obtain total force and torque on particle by summing up all local contributions

[1]: Wen et al. – Galilean invariant fluid-solid interfacial dynamics simulations in lattice Boltzmann simulations, 2014
Speciality: Refilling of uncovered cells

Variants of restoration of distribution functions:

• Set to equilibrium $f_i^{eq}(\rho, \vec{u})$ based on average density of surrounding fluid cells

• Extrapolation from particle normal direction

 ➢ Constraint: Velocity has to match particle velocity in this cell
Overall coupling algorithm

For each timestep t:
1. Map particles into fluid domain
2. Restore missing information in uncovered cells
3. Apply no-slip boundary conditions at particles
4. Calculate forces on particles
5. Carry out LBM step
6. Carry out rigid body solver step (collision detection, time integration)
Benchmark: single moving sphere
Setup

- Single heavy sphere is placed inside a horizontally periodic channel
- Constant inflow from bottom plane
- Choose $\vec{F}_g \approx \vec{F}_{Drag}$
- Important parameter: Galileo number $G = \sqrt{|\rho_p| - 1 |g| D^3}$
 - characterizes different flow regimes

- Compare with finite volume (FV) and accurate spectral element results [1]

[1]: Uhlmann, Dušek – The motion of a single heavy sphere in ambient fluid[...], 2014
Galileo = 178: Steady oblique

- Compare relative vertical particle velocity u_{pV}, recirculation length L_r, velocity profiles, etc.
- Additionally: Horizontal u_{pH} and rotational ω_{pH} particle velocity

<table>
<thead>
<tr>
<th>Method</th>
<th>u_{pH}</th>
<th>$E(u_{pH})$</th>
<th>ω_{pH}</th>
<th>$E(\omega_{pH})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec.Elem.</td>
<td>0.1245</td>
<td>-</td>
<td>0.0137</td>
<td>-</td>
</tr>
<tr>
<td>FV (D=48)</td>
<td>0.1028</td>
<td>1.60%</td>
<td>0.0089</td>
<td>0.35%</td>
</tr>
<tr>
<td>LBM (D=24)</td>
<td>0.0891</td>
<td>2.61%</td>
<td>0.0245</td>
<td>0.80%</td>
</tr>
<tr>
<td>LBM (D=36)</td>
<td>0.0975</td>
<td>1.99%</td>
<td>0.0136</td>
<td>0.00%</td>
</tr>
<tr>
<td>LBM (D=48)</td>
<td>0.1002</td>
<td>1.79%</td>
<td>0.0091</td>
<td>0.34%</td>
</tr>
</tbody>
</table>
Galileo = 190: Oscillating oblique

- Oscillating motion with a fixed frequency f
- Comparison of average and fluctuation quantities

<table>
<thead>
<tr>
<th>Method</th>
<th>f</th>
<th>$E(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec.Elem.</td>
<td>0.071</td>
<td>-</td>
</tr>
<tr>
<td>FV (D=48)</td>
<td>0.0683</td>
<td>3.80%</td>
</tr>
<tr>
<td>LBM (D=36)</td>
<td>0.0863</td>
<td>21.51%</td>
</tr>
<tr>
<td>LBM (D=48)</td>
<td>0.0654</td>
<td>7.85%</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

- LBM with momentum exchange method is a viable choice for simulations of particle-laden flows
- No restrictions regarding shape of particles
- Well-suited for large computations on clusters due to local nature of LBM [1]
- Other LBM coupling algorithms exist but a rigorous direct comparison is missing
 - Use benchmark of single moving sphere for comparing different methods and algorithms

[1]: Godenschwager et al. – A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries
Thank you for your attention!

Christoph Rettinger (christoph.rettinger@fau.de) - Particle-laden Flows with LBM