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Abstract

Since the first laser was developed by Maiman in 1960 the laser technique is a one

of most researchable area in science and industry. A large number of theoretical

and experimental investigation, a implementation of many new types of laser sources

as well as derivative developments in laser processing in the last decades establish

the lasers as working tools in many branches of the modern industry, medicine and

science. However, due to complexity of laser physics, manifold problems without an

exact solution still exist.

This work presents a solution of combined time- and volume-dependent simulation

of laser behavior when generating the lowest order Gauss-mode. To implement it, we

solve two tightly coupled problems of laser physics. The first one addresses a simulation

of the volume-dependent energy distribution of transversal ground-mode in a stable

laser resonator. In order to derive an equation for the Gauss-mode, we solve the partial

differential Helmholtz’s equation that describe a propagation of an electromagnetic

wave in a resonator applying the paraxial approximation. The elements in a resonator

and the resonator itself are described by ray matrix method. We spent a great deal of

effort choosing a correct discretization in the simulation of the energy distribution due

to the fact that an electromagnetic waves, which are passed through the resonator,

propagate differently depending on types of the optical elements.

The second problem investigated in this thesis, is the simulation of laser lasing dynamic

- that is changing the population inversion and photon density. To describe a lasing

behavior we use the laser rate equations. In contrast to already solved well-known

time-dependent laser rate equations we investigate a combined time- and volume-

dependent changing of the population inversion and photon density using results of

an energy distribution simulation. As no exact analytical solution exist for the rate

equations, we solve these problems numerically applying the Euler’s discretization.

The obtained numerical results correlate very well to experimental measurements that

are known from the literature.
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Kurzfassung

Seit der Erfindung des ersten Lasers im Jahre 1960 durch Maiman bleibt die Lasertech-

nik eines der Gebiete in Wissenschaft und Technik, in denen am intensivsten geforscht

wird. Zahlreiche Endeckungen und Entwicklungen in den Gebieten der Laserphysik,

Lasertechnik und der Lasermaterialbearbeitung in den letzten Jahrzehnten haben zur

Etablierung des Lasers als Arbeitswerkzeug in vielen Bereichen der modernen Industrie

beigetragen. Dennoch bleibt eine ganze Reihe von Fragestellungen in der Laserphysik

aufgrund ihrer hohen Komplexität weiterhin offen.

Diese Arbeit beschäftigt sich mit der kombinierten zeit- und volumenanbängigen Simu-

lation der Laserdynamik für die Gaussmode niedrigster Ordnung. Um diese Simulation

implementieren zu können, lösen wir zwei eng verbundene Probleme der Laserphysik.

Das erste Problem stellt die Simulation der volumenabhängigen Energieverteilung der

transversalen Grundmode in einem stabilen Resonator dar. Um die Gleichung für

die Gaussmode abzuleiten, lösen wir die partielle Helmholtz-Differentialgleichung, die

die Ausbreitung der elektromagnetischen Welle beschreibt, mit Hilfe der sog. parax-

ialen Approximierung auf. Die Beschreibung der einzelnen Elemente im Resonator

und des Resonators als Ganzes erfolgt anhand von ABCD-Matrizen. Ein besonderes

Augenmerk wird in der Simulation einer genauen Diskretisierung gewidmet, da die

elektromagnetische Welle sich in einem Resonator in Abhängigkeit von verwendeten

Elementen unterschiedlich ausbreitet.

Das zweite Problem, dass in dieser Arbeit behandelt wird, ist die Simulation der

Laserdynamik - der Änderung der Populationsinversion und Photonendichte. Das

dynamische Verhalten des Lasers wird mit Hilfe von Ratengleichungen beschrieben.

Im Gegensatz zu den bereits bekannten zeitabhängigen Ratengleichungen untersuchen

wir die kombinierte zeit- und volumenabhängige Änderung der Populationsinversion

und Photonendichte. Da für diese Gleichungen keine exakten analytischen Lösun-

gen existieren, werden sie mit Hilfe der Euler-Diskretisierung numerisch gelöst. Die

Ergebnisse der numerischen Simulation korrelieren sehr gut mit den experimentell
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1. Introduction

The laser sources are just ”another” kind of light sources that produce narrow mono-

chromatic and highly focused light with extremely high energy densities either in a

continuous wave or in a very short pulse. Laser beam comes in sizes ranging from

approximately one tenth the diameter of a human hair to the size of a very large

building, in powers ranging from 10−9 to 1020 W, and in wavelengths ranging from

the microwave to the soft-X-ray spectral regions. Lasers have pulse energies as high

as 104 J and pulse duration as short as 10−15 s. These special properties of laser light

make laser a versatile tool applicable in almost all spheres of human life: science,

medicine, material processing, measurement & metrology, show business, military,

etc.

As a ”conventional” light, the laser light is described by the Maxwell’s equations.

However, when describing a periodic wave in the laser resonator, a simplified partial

case of those equations can be used that is called a paraxial Helmholtz’s equation:

−4 E − k2E = 0.

Based on this equation we build up our consideration of the Gauss-mode propagation

in a stable resonator. We involve this idea for solving two tightly coupled prob-

lems of laser physics: volume-dependent simulation of energy distribution in a laser

resonator and combined volume-dependent and time-dependent simulation of laser

behavior of beam generation. In order to simplify the problem we solve and imple-

ment the Helmholtz’s equation only for the transversal ground mode (the lowest order

Gauss-mode).

Few words regarding the structure of this thesis. We have divided it into two main

parts. Chapter 2 considers theoretical approaches that are essential for solving our

problems. In Chapter 3 the program implementation, discretization and numerical

results are presented. Further, the theoretical part is divided into two sections. In

the first section we analyze a Maxwell’s equations for the vacuum and transparent

3



1. Introduction 4

media. Then we derive the partial deferential Helmholz’s equation from it. Having

this equation we describe mathematically a propagation of the electro-magnetic wave

in the resonator. The next step is derivation of the equation for Gauss-mode and

solving the Helmholz’s equation applying the paraxial approximation. To describe the

propagation of the wave through the optical elements we use ray matrices method.

Finally, we describe the entire laser resonator and define some properties of it to get

a complete equation of propagation of the electro-magnetic wave in laser.

In the second section of the theoretical part we consider the laser lasing dynamic.

We begin from a fundamental look at lasers and lasing action aside from the basic

processes, such as absorption, spontaneous and stimulated emission. We also outline

key laser mechanisms, such as pumping, the requirement for feedback, and losses in a

real laser. Finally, the laser rate equation for population inversion and photon density

is derived.



2. Theoretical Consideration

2.1. Gauss Mode Analysis

In this section we derive the equation of propagation of electromagnetic wave in vol-

ume. We start from consideration of the Maxwell’s equation for vacuum and dielectric

medium that allow us to come to the scalar Helmholtz equation. Then applying the

paraxial approximation we solve this PDE. Lastly, we describe a resonator using the

ray matrices, we also define its properties fully clarify behavior of the electromagnetic

wave running its round-trips throughout the resonator.

2.1.1. Maxwell’s Equations for Vacuum

Maxwell’s equations predicting the propagation of oscillating electromagnetic waves

can be derived from the following experimentally determined relationships.

Gauss’s law. This law states that the total electric flux Φ through any closed surface,

or the surface integral over the normal component of the electric field vector E over

that closed surface, equals the net charge
∑

n qn inside the surface

Φ =

∮
E · dS =

1

ε0

∑
n

qn =
1

ε0

∫
V

ρdV, (2.1)

where dS is the surface element vector at any point p on the surface surrounding the

volume V . If the charge is distributed within the volume, ρ is the localized charge

density within the volume element dV . In differential form this law becomes

∇ ·D = ρ (2.2)

This law is named as the first Maxwell’s equation.

Biot-Savart law. This law is given here in a form similar to that of Coulomb’s law

5



2. Theoretical Consideration 6

relating the force of attraction of two charges

B =
µ0

4π

∫
V

J(V )× r

|r|3
dV, (2.3)

where J(V ) is the current density within volume element dV and r is the position

vector from volume element dV to the point of measurement B. It can be expressed

in differential form as

B =
µ0

4π
5×

∫
J(V )

|r|
dV, (2.4)

which leads directly to

∇ ·B = 0, (2.5)

since B is the curl of another vector. This is the second Maxwell’s equation.

Ampere’s law. This law states that the line integral of the magnetic induction vector

B around any closed path is equal to the product of the permeability µ0 and the net

current I flowing across the area bounded by the path:∮
B · dl = µ0I. (2.6)

After differentiation, this law can be written as

5×B = µ0(J +
∂D

∂t
) (2.7)

and represents the third Maxwell’s equation.

Faraday’s law. This law is analogous to Ampere’s law in stating that the line integral

of the electric field vector E around any closed path l is equal to the time rate of change

of magnetic flux ΦM passing through the area defined by that path∮
E · dl = −dΦM

dt
. (2.8)

In differential form, this law is written as

5× E = −∂B

∂t
, (2.9)

and represents the fourth Maxwell’s equation.

In absence of matter, i.e. in vacuum, the Maxwell’s equations reduced to

5 · E = 0, (2.10)
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5 ·H = 0, (2.11)

5×H = ε0
∂E

∂t
, (2.12)

5× E = −µ0
∂H

∂t
. (2.13)

In rewriting these equations, B has been replaced by µ0H since B = µ0(H + M) and

the magnetization in vacuum is equal to zero (M = 0).

The solutions for E and H can be separated by taking the curl of one and the time

derivative of the other. Then, using the fact that the order of differentiation can be

reversed, one can obtain the following parallel equations

5× (5× E) = −µ0ε0
∂2E

∂t2
, (2.14)

5× (5×H) = −µ0ε0
∂2H

∂t2
, (2.15)

Because 5× (5× U) = 5(5 · U)−4U for any vector U , (2.14) and (2.15) leads to

the following two Maxwell’s wave equations

4E = µ0ε0
∂2E

∂t2
(2.16)

and

4H = µ0ε0
∂2H

∂t2
. (2.17)

2.1.2. Solution of Wave Equations

The equations (2.16) and (2.17) are the equations in the form

4U =
1

v2

∂2U

∂t2
, (2.18)

where U is the function of the coordinates x, y, z and the time t, v is the velocity

(v = 1/
√

µε). In our case, the function U represents electric field intensity E(x, y, z, t).

To simplify this function, we assume that the wave propagates in a single z direction

only, and consequently we use only z component U(z, t) of U . Than we can rewrite
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(2.18) as
d2U(z, t)

dz2
=

1

v2

d2U(z, t)

dt2
. (2.19)

We assume that the wave function U(z, t) is separable and thus, can be written as a

product of functions Uz(z) and Ut(t) as follows

U(z, t) = Uz(z)Ut(t) or U(z, t) = UzUt (2.20)

Substitution into (2.19) leads to

Ut
d2Uz

dz2
− Uz

v2

d2Ut

dt2
= 0 (2.21)

or
v2

Uz

d2Uz

dz2
=

1

Ut

d2Ut

dt2
(2.22)

The left side of (2.22) is dependent only upon z and the right side only upon t, and

thus - in order to satisfy the equation - both sides must be equal to the same constant,

which we will denote arbitrarily as −ω2. This leads us to the following two equations

d2Uz

dz2
+

ω2

v2
Uz = 0 (2.23)

d2Ut

dt2
+ ω2Ut = 0. (2.24)

These equations have the following solutions:

Uz = C1e
i(ω/v)z + C2e

−i(ω/v)z (2.25)

Ut = C3e
iωt + C4e

−iωt, (2.26)

where the constants C1, C2, C3 and C4 are determined by the boundary conditions.

We can now express the general solution U(z, t) as

U(z, t) = Uz(z)Ut(t) ∝ e±i(ω/v)ze±iωt = e±i((ω/v)z±ωt). (2.27)
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This general solution involves a complex wave function. For our purposes, we consider

a wave travelling from left to right that is a function in the form

U(z, t) = Ce−i(kz−ωt), (2.28)

where k is

k =
ω

v
. (2.29)

The quantity k is called the propagation constant or the wave number (the number of

waves per unit length) and has dimension of m−1.

2.1.3. Maxwell’s Equations for Dielectric Medium

Due to the fact that magnetization M and charge density ρ are both zero for dielectric

materials, the Maxwell’s equations become for these material as follows

∇ · E = −1

ε
∇ · P, (2.30)

∇ ·H = 0, (2.31)

∇×H = ε
∂E

∂t
+

∂P

∂t
+ J, (2.32)

∇× E = −µ
∂H

∂t
. (2.33)

Taking the curl of (2.33) and the time derivative of (2.32) and then eliminating H, we

obtain the general wave equation for the electric field E

∇× (∇× E) +
1

v2

∂2E

∂t2
= −µ

∂2P

∂t2
− µ

∂J

∂t
. (2.34)

The left-hand side of this equation is the familiar wave equation for a vacuum, as

described in (2.14). The two additional terms on the right-hand side are called source

terms. The first source term involves polarization charges, relating to localized charge

effects in dielectric media; the second term involves conduction charges that are ap-

plicable to metallic materials.

For the gain medium (i.e. nonconducting mediums with J = 0) Gauss’s law (2.2)
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shows that ∇ ·D = 0. Due to electric displacement vector D = ε0E + P we can thus

show that ε0∇ · E +∇ · P = 0. For a spatially uniform medium, ∇ · P = 0 and thus

∇ ·E = 0. Therefore, using the vector relationship as given after (2.15), we can show

that ∇× (∇× E) = −4 E. Hence (2.34) reduces to the simplified wave equation

−4 E = −µε
∂2E

∂t2
. (2.35)

This equation is called the scalar Helmholtz equation. As we have shown in (2.18) that

E is time periodic function, then we can rewrite the scalar Helmholtz equation to the

equation for time periodic function, or paraxial Helmholz equation:

−4 E − k2E = 0. (2.36)

2.1.4. Gauss Mode Equation of Paraxial Approximation

Paraxial waves are waves with wavefront normals making small angles with the z axis.

They satisfy the paraxial Helmholtz equation (2.36). An important solution of this

equation that exhibits the characteristics of an optical beam is a wave called the Gaus-

sian beam [Saleh91]. The intensity distribution in such beam in any transverse plane

is a circularly symmetric Gaussian function centered around the beam axis. The width

of this function is minimum at the beam waist and grows gradually in both directions.

Under ideal conditions, the laser radiation takes the form of a Gaussian beam.

There are few possibilities to define the equation of Gaussian beam (mode) that prop-

agates in a resonator. So, it can be solved by paraxial wave approximation and Fresnel

approximation [Svelt90]. We consider a commonly used method of the paraxial ap-

proximation.

We begin with the plane wave equation

E = exp(−iκz)Ψ(x, y, z) (2.37)

as we assumed that wave is propagating in z direction and κ is the wave number (2.29).

From physical point of view, the factor exp(−iκz) expresses that the wave should

propagate more or less as a uniform plane wave and the factor Ψ(x, y, z) measures of

how the beam deviates from a uniform wave.

After substitution of (2.37) into paraxial Helmholtz equation (2.36), the following
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derivatives are necessary

∂2E

∂x2
= exp(−iκz)

∂2Ψ(x, y, z)

∂x2

∂2E

∂y2
= exp(−iκz)

∂2Ψ(x, y, z)

∂y2

∂E

∂z
=

(
−iκΨ(x, y, z) +

∂Ψ(x, y, z)

∂z

)
exp(−iκz)

∂2E

∂z2
=

(
−κ2Ψ(x, y, z)− i2κ

∂Ψ(x, y, z)

∂z
+

∂2Ψ(x, y, z)

∂z2

)
exp(−iκz)

When these derivatives are substituted into (2.36), the terms with κ2 are eliminated,

the common factor exp(−iκz) cancels out of all terms and we neglect the relatively

small term−∂2Ψ(x, y, z)/∂z2, because the first derivative is multiplied by the relatively

large number κ, thus, all these assumptions yield to so-called paraxial wave equation:

−∂2Ψ

∂x2
− ∂2Ψ

∂y2
+ 2iκ

∂Ψ

∂z
= 0 (2.38)

As it is typical to the solution of differential equations, we guess the functional form of

solution and then force the unknown coefficients or functions to fit the equation. The

solution of the paraxial equation provides the Gaussian beam. It is obtained from the

paraboloidal wave using a simple transformation. Let us take the paraboloidal shifted

wave equation:

Ψ(x, y, z) = A(z) exp

(
−iκ

x2 + y2

2q(z)

)
(2.39)

where A(z) describes the amplitude of the wave and q(z) is a shift.

Our goal is to find Ψ(x, y, z) by reducing the partial differential equation (2.38) to the

ordinary differential equations for the unknown functions A(z) and q(z). Thus, the

following derivatives are necessary:

∂Ψ(x, y, z)

∂x
= A(z) exp

(
−iκ

x2 + y2

2q(z)

)(
−iκ

2x

2q(z)

)
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∂2Ψ(x, y, z)

∂x2
= A(z) exp

(
−iκ

x2 + y2

2q(z)

)(
−κ2 x2

q2(z)
− iκ

1

q(z)

)

∂2Ψ(x, y, z)

∂y2
= A(z) exp

(
−iκ

x2 + y2

2q(z)

)(
−κ2 y2

q2(z)
− iκ

1

q(z)

)

∂Ψ(x, y, z)

∂z
= A′(z) exp

(
−iκ

x2 + y2

2q(z)

)
+ A(z) exp

(
−iκ

x2 + y2

2q(z)

)

·
(
−κ2 y2

q2(z)

)(
−(−1)iκq′(z)

x2 + y2

2q2(z)

)
If we substitute these functions into (2.38), we get:

κ2

q2(z)
(x2 + y2)(1− q′(z)) + 2iκ

(
1

q(z)
+

A′(z)

A(z

)
= 0,

that leads into two ODE’s:

∂q(z)

∂z
= 1

and

∂A(z)

∂z
= −A(z)

q(z)

with unique solutions:

q(z) = q0 + z (2.40)

and

A(z) = −A0q0

q(z)
. (2.41)

Now, by combining the solutions of ODE’s (2.40), (2.41) and paraboloidal wave equa-

tion (2.39), so we get the equation of the lowest order Gauss mode from paraxial

Helmholtz equation:

E(x, y, z) = A0
q0

q0 + z
exp

(
−iκ

x2 + y2

2(q0 + z)

)
(2.42)
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After normalization of the amplitude by A0q0 = 1 the final Gauss mode equation is

obtained:

E(x, y, z) =
1

q0 + z
exp

(
−iκ

x2 + y2

2(q0 + z)

)
, (2.43)

where q0 is the beam parameter (or resonator parameter), which is unknown and z

describe the coordinate of propagation of the wave. The parameter q0 is unknown and

we derive it from resonator stability criteria in Section 2.1.8.

2.1.5. Properties of Gaussian Beams

As we already mentioned, a Gaussian beam is characterized completely at any spatial

location by defining both its ”beam waist” and its wavefront curvature at a specific

location of the beam. Moreover, an unaltered Gaussian beam always has a minimum

beam waist w0 at one location in space. The coordinate axis z that is used to define

the propagation direction of the beam can be defined to have a value of z = 0 at the

location of the minimum beam waist.

The intensity distributions of a simple Gaussian beam is in the form:

I = I0 exp

(
−y2 + x2

w2

)
(2.44)

where I0 is the maximal intensity of the beam and w is the radius of the beam (or

waist), inside of which 86.5 % of energy is concentrated as shown in Fig. 2.1

The beam then expands and diverges from that location, so the beam waist at a

Q l p/2= /( w )0

1/e 1

R(z)

w0
w02

z

b=2z0

wzI0

w

2

2
2

0

w

r

eII

-

=

86,5%

r
(a) (b)

Fig. 2.1.: Gaussian beam: (a) energy distribution, (b) caustic and associated parame-
ters
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distance of ±z from the minimal beam waist w0 can be described as:

w(z) = w0

√
1 +

(
λz

πw2
0

)2

(2.45)

or, if the minimal beam waist w0 occurs at a value of z0 such that z0 6= 0, then

w(z) = w0

√
1 +

(
λ(z − z0)

πw2
0

)2

(2.46)

The beam wavefront curvature of a Gaussian beam at a location z, in terms of the

minimal beam waist w0 and the wavelength λ, is given by

R(z) = z

(
1 +

(
πw2

0)

λz

)2
)

(2.47)

The angular divergence of the beam can be computed as

θ(z) = lim
z→∞

2w(z)

z
=

2λ

πw0

= 0.64
λ

w0

(2.48)

Equation (2.45) can be also expressed as

w(z) = w0

√
1 +

z2

z2
R

(2.49)

where term zR is the Rayleigh range (also called Rayleigh length)

zR =
ηπw2

0

λ
(2.50)

The Rayleigh range defines the depth of focus when focusing a Gaussian beam. An

alternative term b = 2zR is referred to the so called confocal parameter that is com-

monly used to characterize Gaussian beams (see Fig. 2.1).

2.1.6. Ray Matrices

Let us consider a ray of light that is either transmitted by or reflected from an optical

element with reciprocal behavior (e.g., a lens or a mirror). Let z be the optical axis of
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this element, as shown in Fig. 2.2. Furthermore, we assume that the ray is travelling

approximately in the z direction in a plane containing the optical axis. The ray

vector r1 at a given input plane IP of the optical element can be characterized by

two parameters, namely its radial displacement r1(z1) from the z axis and its angular

displacement θ1. Likewise the ray vector r2 at a given output plane OP can be

characterized by its radial r2(z2) and angular θ2 displacements. The sign convention

for angles is that the angle is positive if the r vector must be rotated clockwise to

make it coincide with the positive direction of the z axis. Thus, the angles θ1 and θ2

in Fig. 2.2 (b).

The angular displacement θ within paraxial-ray approximation is small enough to

r
2

r
1

l

Q
1

Q
2

l

-Q
2

-Q
1

r
2

r
1

IP OP OPIP

z z

(a) (b)

Fig. 2.2.: Optical-ray transformation through free space with (a) positive and (b) neg-
ative ray slope

allow the approximation to be made, sinθ ∼= tanθ ∼= θ. In this case, output (r1, θ1)

and input (r2, θ2) variables are related by a linear transformation:

r2 = Ar1 + Bθ1 (2.51a)

θ2 = Cr1 + Dθ1 (2.51b)

where A, B, C, and D are constant characteristic of the given optical element. In a

matrix formulation, it is, therefore, natural to write these equations as:[
r2

θ2

]
=

[
A B

C D

][
r1

θ1

]
(2.52)

where the ABCD matrix completely characterizes the given optical element within the

paraxial-ray approximation and are called as ABCD matrix or ray matrix.

Let us consider ray matrices for some simple resonator elements. At first, we consider

the material (or free space) propagation of a ray along a length dz = L of a material
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with refractive index n (in the case of air or free space n = 1) as shown in Fig. 2.3 (a).

If input and output planes lie just outside the medium, then using Snell’s law in the

paraxial-ray approximation we have the following equation for a medium of refractive

index equal n

r2 = r1 +
Lθ1

n
(2.53a)

θ2 = θ1 (2.53b)

The corresponding ABCD matrix is therefore:[
1 L/n

0 1

]
(2.54)

In the next example we consider ray propagation through a thin lens of focal length f

r2

r1

Q1/n

IP OP

lQ1

Q2

Q1

r1
r2 Q

2

f

p p

z

z

IP OP

Q1

Q
2

z

r =1 r2

IP = OP

R

(b)

(a)

(c)

Fig. 2.3.: Beam propagation (a) in free-space, (b) through a thin lens, (c) reflection
from a spherical mirror

(f is taken to be positive for a converging lens) as shown in Fig. 2.3 (b)

r2 = r1 (2.55a)

The second relation is obtained from the well-known law of geometrical optics, (1/R1)+

(1/R2) = 1/f), using the fact that R1 = r1/θ1 and R2 = r2/θ2. Involving (2.55a) we
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obtain

θ2 = − 1

f
r1 + θ1 (2.55b)

According to (2.55b) the ABCD matrix becomes:[
1 0

−1/f 1

]
(2.56)

In the last example we consider reflection of a ray by a spherical mirror of radius of

curvature R (R is taken to be positive for a concave mirror). In this case, the z1 and

z2 planes are taken to be coincident and placed just in front of the mirror, and the

positive direction of the r axis is taken to be the same for incident and reflected rays

as in Fig. 2.3 (c). The positive direction of the z axis is taken to be from left to right

for the incident vector and from right to left for the reflected vector. Given these

conventions, the ray matrix of a concave mirror of curvature R and hence focal length

f = R/2 can readily be shown to be identical to that of a positive lens of focal length

f = R/2. The ray matrix is therefore equal to:[
1 0

−2/R 1

]
(2.57)

Once the matrices of the elementary resonator elements are known, one can readily

obtain the overall matrix. The overall ABCD matrix can be obtained by multiplying

the ABCD matrices of the elementary components. Note, however, that the order,

in which matrices appear in the product is the opposite of the order, in which corre-

sponding optical elements are traversed by the light ray, i.e.:[
Atot Btot

Ctot Dtot

]
=

[
An Bn

Cn Dn

][
An−1 Bn−1

Cn−1 Dn−1

]
· · ·

[
A1 B1

C1 D1

]
(2.58)

or

M =
1∏

i=n

Mi (2.59)

where n is the number of elementary resonator elements.

Reminding that the determinant of the ABCD matrices of each elements in a resonator

is unitary:

AD −BC = 1 (2.60)
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we assume that the determinant of overall ABCD matrix of resonator is unitary too.

Now let us note some spatial properties of the overall ABCD (M) matrix of the res-

onator. Suppose we have numeric values for the final matrix members of a complex

optic system like shown in (2.42). The meaning of the A, B, C and D values can be

understood better if we consider of what will happen having one of them equal to zero

[Gerra78].

a) D = 0. This means that all beams coming from the same point of the input plane,

will leave the surface under the same angle θ2 = Cr1 related to axis of the system inde-

pendently to an angle θ1 the beams have entered the surface as shown in Fig. 2.4 (a).

b) B = 0. This means that all beams leaving a point at r1 coordinate of the surface

r
1 r

1

r
2

ABCDABCD

Q
2

ABCD
Q

1
Q

2
ABCD

r
2Q

1

(a) (b)

(c) (d)

IP OPIP

OP

Fig. 2.4.: Propagation of the light thought optical systems knowing the elements of
ABCD matrix

will go through the same point at r2 coordinate of the other surface. Thus, both these

points are correspondingly the object itself and its reflection. In their own turn, the

mentioned surfaces are called conjugated. The ratio r2/r1 defines a magnification of

the system (shown in Fig. 2.4 (b)).
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c) C = 0. In this case all beams that have entered the system in parallel to each

other, will produce also the parallel beams at the output of the system. However,

their angle to the axis of the system will change. Such a system, which transforms

parallel beams to parallel beams changing only the angle, is called a telescopic system.

The expression n1D/n2 = r2/r1 defines an angle magnification of the system (shown

in Fig. 2.4 (c)).

d) A=0. This means that beams entering the system under the same angle will go

through the same point at r2 coordinate of the output plane. Thus, the system col-

lects the parallel beams into a focus point located on the output plane (shown in

Fig. 2.4 (d)).

e) Lastly, the important thing is that if any of A and D matrix values becomes zero,

then BC = −1 is required according to the expression (2.60). Similarly to that, if any

of B and C matrix values becomes zero, then A has to be a reverse value of D.

2.1.7. Stability of Resonator

Conditions, under which the laser beam remains concentrated after many round-trips

in a resonator are called stable, and a resonator that fulfills these conditions is called

a stable resonator. A resonator, in which the beam is diverging out of the cavity, is

called unstable.

In order to derive the stability criteria for a resonator, let us take a generalized res-

onator build by two lenses (every mirror can be described as a lens) with focal length

f with a distance d. The ray propagates over this distance in one pass through the

cavity and is refracted (reflected) by the one of lens. This can be expressed in ray

matrix as the following:[
r2

θ2

]
=

[
1 0

−1/f 1

][
1 d

0 1

][
r1

θ1

]

=

[
1 d

−1/f 1− d/f

][
r1

θ1

]
(2.61)

where the propagation matrix operates on r1 and θ1 first and then is followed by the

refraction matrix.

Now we consider the situations depicted in Fig. 2.5. If a ray leaves lens L1, propagates
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Fig. 2.5.: Laser beam tending to (a) instability and (b) stability

to lens L2, and is refracted by lens L2, we can ask whether r2 is greater than or less

than r1 at that point and whether θ2 is greater or less than θ1. If r2 > r1 and θ2 > θ1

then the beam is on a diverging path that would lead to instability after many passes

since the beam would sooner or later walk its way out of the cavity. However, if

r2 < r1 and θ2 < θ1 then we could conclude that the beam would tend toward

stability, since it would always be attempting to converge to the optic axis.

We will now attempt to solve (2.61) by asking whether solutions exist, in which the

ray (r2, θ2) will differ from the ray (r1, θ1) by only a constant factor λ:[
r2

θ2

]
= λ

[
r1

θ1

]
(2.62)

For such a solution, the ray would be diverging for λ > 1 since in that case r2 > r1

and θ2 > θ1, which produces a diverging ray as seen in Fig. 2.5. It would likewise be

converging for λ < 1 since r2 < r1 and θ2 < θ1. In order to develop the solution of

(2.61) by using ABCD matrices, we solve it for the possible values of λ. The stability

criteria will then be obtained after considering a large (say, N) number of passes back

and forth within the cavity.
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Writing the expression of (2.61) with the relevant ABCD matrix leads to[
r2

θ2

]
=

[
A B

C D

][
r1

θ1

]
= λ

[
r1

θ1

]
(2.63)

The two right-hand parts of this equality can be combined to give[
A− λ B

C D − λ

][
r1

θ1

]
= 0 (2.64)

Because λ is a constant, (2.64) is a characteristic eigenvalue equation that will be

satisfied only if the determinant of the coefficients of the matrix is zero:[
A− λ B

C D − λ

]
= 0 (2.65)

Using the relevant ABCD values for the laser cavity with two curved mirrors as given

in (2.61) leads to the determinant∣∣∣∣∣ 1− λ d

−1/f 1− d/f − λ

∣∣∣∣∣ = 0 (2.66)

which must be solved for the eigenvalues or characteristic values. Solving the deter-

minant leads to the eigenvalue equation

λ2 − 2λ

(
1− d

2f

)
+ 1 = 0 (2.67a)

or

λ2 − λ (A + D) + 1 = 0 (2.67b)

Let us consider an equation (2.67a) in details. This equation is the equation in the

form

x2 − 2xα + 1 = 0 (2.68)

where x = λ and α = 1− d/2f . This equation has both real and imaginary solutions.

The real solution for x occurs for |α| > 1 and can be written as

x = λ = α±
√

α2 − 1 = e±φ, |α| > 1 (2.69)
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where the solution for λ is expressed also as an exponential in the form of λ = e±φ.

The imaginary solution for λ is

x = λ = α± i
√

1− α2 = e±iφ, |α| < 1 (2.70)

where i =
√
−1 and we have expressed the imaginary solution in the form of λ = e±iφ.

To define stability of resonator we should look of what happens after N passes of

beam through the cavity. The answer requires N successive applications of (2.47). We

consider the matrix representation of this as[
rN

θN

]
= λN

[
r1

θ1

]
(2.71)

Thus, for the solution of (2.69) for |α| > 1, for N passes we would have[
rN

θN

]
= e±Nφ

[
r1

θ1

]
(2.72)

which would clearly diverge for large N since the general solution consists of the sum of

the exponential functions containing both the positive and negative exponents, leading

to an unstable cavity situation.

For the solution of (2.70) for |α| < 1, for N passes we would have[
rN

θN

]
= e±iNφ

[
r1

θ1

]
(2.73)

from which we conclude that the beam pass would clearly converge, since |e−iNφ| ≤ 1.

The requirement for stability would therefore be |α| < 1, or

λ =

(
1− d

2f

)
± i

√
1−

(
1− d

2f

)2

=

(
1− d

2f

)
± i

√
d

f

(
1− d

4f

)
(2.74)

The value of λ will remain imaginary, leading to stability, only if

1 >
d

4f
or 0 < d < 4f (2.75)
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or, for spherical mirrors of radius R such that R = 2f

0 < d < 2R (2.76)

For two mirrors of unequal curvature (f1 6= f2) separated by a distance d, we have the

inequality

0 < α1α2 < 1 (2.77)

In this case, the solutions for α1 and α2 are

α1 = 1− d

2f1

= 1− d

R1

= g1

α2 = 1− d

2f2

= 1− d

R2

= g2

We should redefine α1 and α2 as g1 and g2 to be consistent with the laser theory.

Thus, for stability we have the requirement that

0 <

(
1− d

R1

)(
1− d

R2

)
< 1 or 0 < g1g2 < 1 (2.78)

This condition can be expressed in the form of a stability diagram, as shown in Fig.

Fig. 2.6. The dashed regions are the regions where (2.78) is not satisfied and g1g2 > 1

this cavity is unstable. For the shaded regions, (2.78) is satisfied, g1g2 < 1, and the

cavity is stable.

Three particular points in Fig. 2.6 are of special interest. They represent basic ”ide-

alized” cavities that are used for building of more complicated cavities

R1 = R2 = d/2 (symmetric concentric) (2.79a)

R1 = R2 = d (confocal) (2.79b)

R1 = R2 = ∞ (plane− parallel) (2.79c)

All three of these cavities are on the edge of stability in the diagram and can become

extremely ”lossy” for slight deviations into the shaded regions. Thus, it would be wise

to purposely design those cavities so that the g1, g2 parameters move slightly into the
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Fig. 2.6.: Stability diagram

stable zones indicated in Fig. 2.6.

2.1.8. Stability and Gaussian Beam

Now we know the total ray matrix, its eigenvalues and properties of the resonator,

so we can try to define the last unknown in the equation (2.43) of the Gauss mode

that is beam parameter q. We have seen of how the properties of a Gaussian beam

can be completely predicted at any point in space if its beam waist and curvature

are known at only one specific point, using (2.45) or (2.46) or (2.47). To calculate

the propagation of such a beam through the optical elements, we involve the ABCD

matrices. The technique is based upon the use of the complex beam parameter q for

Gaussian beams, which is defined as follows

1

q
=

1

R(z)
− i

λ

πw2(z)
(2.80)

where i denotes the complex number and q contains information about the wavelength

λ as well as the beam curvature R(z) and the beam waist w(z) at the location z. We

can use the ABCD matrices to calculate the beam parameter at any point 2 if it is
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known at point 1 by using the propagation expression

q2 =
Aq1 + B

Cq1 + D
(2.81)

and in general use

qj =
Atotqj−1 + Btot

Ctotqj−1 + Dtot
(2.82)

where j = 0 · · ·n− 1 and n is the number of elements in resonator.

To define the parameter q0 we use the eigenvectors of complex ABCD matrix of

resonator, because the eigenvectors describe the propagations of the beams through

the optical system.

As we know the eigenvalues of the complex ABCD matrix, we have to define the

eigenvectors, such that in the vector form[
Atot Btot

Ctot Dtot

][
v1

v2

]
=

[
λ1

λ2

][
v1

v2

]
(2.83)

or, in the matrix as[
Atot Btot

Ctot Dtot

][
v11 v12

v21 v22

]
=

[
v11 v12

v21 v22

][
λ1 0

0 λ2

]
(2.84)

Since both sides of equation (2.84) should be equal, after multiplication of matrices in

both sides of equation, we can rewrite our unknown matrix v as

v =

[
v11 v12

v21 v22

]
=

[
λ1 −D λ2 −D

C C

]
(2.85)

or, our eigenvectors are:

v1 =

[
v11

v21

]
=

[
λ1 −D

C

]
(2.86a)

v2 =

[
v12

v22

]
=

[
λ2 −D

C

]
(2.86b)
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Finally, the unknown start beam parameter q0 is

q0 =

[
(λ1 −D)/C

1

]
(2.87)

or

q0 =

[
(λ2 −D)/C

1

]
(2.88)

Now we know most things about propagation of the Gaussian mode through the laser

resonator and can start to simulate the energy distribution of an electro-magnetic wave

in a resonator. But it is not sufficient to simulate the laser completely. Because the

Gauss analysis define the propagation of electromagnetic mode (radiation) in space

only, it saying nothing regarding changes in time. To complete this, we need to study

the rate equations, that describe the wave from the quantum point of view and show

the changes of the radiation in the space and time.

2.2. Laser Rate Equations

In this section we derive volume- and time-dependent laser behavior equation. As

first, we obtain only time-dependent equation for the population inversion and photon

density that encapsulates three basic laser processes, which are absorption, stimulated

an spontaneous emission. Besides, we consider a cw lamp pumping in order to compute

the pump rate and losses in the resonator and to determine the photon decay time.

We end up with an implementation that connects the energy resolved in the previous

section with the time dependencies of laser dynamics.

2.2.1. Absorption, Stimulated and Spontaneous Emissions

Every system has thermal energy. This energy can excites atoms and raise them to the

higher energy levels: the more thermal energy that is injected into a system, the more

higher energy levels will be populated. The resulting distribution of energy is governed

by Boltzmann’s law, one of the fundamental laws of thermodynamics. Boltzmann’s

law predicts the population of atoms at a given energy level as follows:

N = N0 exp

(
− E

kT

)
(2.89)
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where N is the population of atoms at the given energy level, N0 is the population of

atoms at ground state, E is the energy above ground level, k is Boltzmann’s constant

(1.38 · 10−23 J/K), and T is the absolute temperature.

Let us now consider a system that has two energy states with low E1 and high E2

energies and is not in a thermodynamic equilibrium, i.e. E > kT . In one such a system

three basic radiative processes are identified by Einstein that affect the concentrations

of atoms in both states with energy E1 (state 1) and E2 (state 2) (compare of Fig. 2.7)

Spontaneous emission . It appears if the atoms in state 2 decayed spontaneously

to state 1, and added their excess energy to the cavity field in the form of a photon

(Fig. 2.7 (a)). If the population density in state 2 was N2, the decay of this state is

given by
dN2

dt
|spontaneuous = −A21N2 (2.90)

The coefficient A21 is a positive constant called the rate of spontaneous emission or

the Einstein’s A coefficient. It defines the spontaneous emission (or radiative) lifetime

τsp = A−1
21

Absorption . In this process an atom in state 1 absorbs a photon from the field, and

thus, converts the atom into one of those in state 2 (Fig. 2.7 (b)). The rate, at which

this process takes place must depend on the concentration of absorbing atoms and the

field, from which they extract the energy. Thus we have

dN2

dt
|absorption = B12N1ρ(ν) = −dN1

dt
|absoprtion (2.91)

Absorption process is defined thus by Einstein’s coefficient B12.

Stimulated emission . This process is the reverse to absorption; the atom gives

up its excess energy hν to the field, adding coherently to the intensity (Fig. 2.7 (c)).

Thus, the added photon is at the same frequency, phase, polarization and propagation

direction as the wave that induced the atom to undergo this type of transition.

dN2

dt
|stimulated = −B21N1ρ(ν) = −dN2

dt
|stimulated (2.92)

At thermodynamic equilibrium, each process going ”down” must be balanced exactly

by the processes that going ”up”

dN2

dt
|radiativ = −A21N2 + B12N1ρ(ν)−B21N2ρ(ν) = −dN1

dt
|radiativ (2.93)
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Fig. 2.7.: Radiative processes of (a) spontaneous emission, (b) absorption and (c) stim-
ulated emission

At equilibrium, the time rate of change must be zero.

N2

N1

=
B12ρ(ν)

A21 + B21ρ(ν)
(2.94)

Einstein involved the classic Boltzmann’s statistics to provide another equation for

the ratio of the two populations in states 2 and 1 [Verd95]:

N2

N1

=
g2

g1

e−hν/kT =
B12ρ(ν)

A21 + B21ρ(ν)
(2.95)

where g2(1) is the number of ways that an atom can have the energy E2(1). For a simple

atom, this quantity is related to the total angular momentum quantum number J2(1)

by

g2(1) = 2J2(1) + 1 (2.96)

It is very easy to verify this formula by using the hydrogen atom for a typical case.

We need to solve for ρ(ν) from (2.95):

A21

(
g2

g1

e−hν/kT

)
+ B21

(
g2

g1

e−hν/kT

)
ρ(ν) = B12ρ(ν) (2.97)

or

ρ(ν) =
A21

(
g2

g1
e−hν/kT

)
B12 −B21

(
g2

g1
e−hν/kT

) (2.98)
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After dividing by (g2/g1) exp(−hν/kT ) and factoring B21 out of the denominator, we

obtain

ρ(ν) =
A21

B21

1
B12g1

B21g2
ehν/kT − 1

(2.99)

This is almost the Planck’s formula for the energy density of the electromagnetic field

inside the cavity at the center frequency:

ρ(ν) =
8πn3ν2

c3

hν

ehν/kT − 1
(2.100)

To adjust (2.99) to this form, Einstein forced the match with identification of various

interrelationships between the coefficients

A21

B21

=
8πn3ν3h

c3
(2.101a)

and

B12g1

B21g2

= 1 (2.101b)

With these identifications, (2.99) is identical to (2.100).

Equations (2.101a) and (2.101b) are very important because they show a connection

between three different radiative processes: spontaneous emission, absorption and

stimulated emission.

However, radiation is not the only thing that can affect an excited atom. The atoms

can be affected by another atom, an electron or a lattice vibration (a phonon), which

can also cause transitions to take place. These things play important role for the

radiative processes of absorption, stimulated emission and especially for spontaneous

emission. In other words, they define a distribution of photon frequencies that can be

emitted (stimulated or/and spontaneous). This relative distribution is called the line-

shape function with g(ν)dν. Because of the high complexity of physics of line-shape

building and broadening, describing this will explode the scope of this work, thus we

limit ourself only to some statements that are necessary for our further explanations

without going into deep derivations.

As a photon has to have some frequency, the integral of g(ν) over all frequencies is

equal to 1 ∫ ∞

0

g(ν̂)dν̂ = 1 (2.102)
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and we can rewrite equation (2.93) involving the line-shape function

dN2

dt
|radiativ = −A21N2

(∫ ∞

0

g(ν̂)dν̂ = 1

)
+ B12N1

∫ ∞

0

g(ν̂)ρ(ν̂)dν̂ − B21N2

∫ ∞

0

g(ν̂)ρ(ν̂)dν̂ (2.103)

Note that if ρ(ν̂) is very broad compared to g(ν̂), we can evaluate it at ν̂ ≈ ν and pull

it outside of the integral leaving
∫

g(ν̂)dν̂ = 1. Then (2.103) reproduces the original

formulation of Einstein (2.93).

Let us consider the case where the spectral width of ρ(ν) is very small compared to

g(ν), then we can consider all of the photons to have a single frequency or ρ(ν) can

be approximated by a δ function.

If

ρ(ν̂) ≈ ρνδ(ν̂ − ν) (2.104)

then
dN2

dt
|radiativ = −A21N2 + B12N1g(ν)ρν −B21N2g(ν)ρν (2.105)

This equation is always converted to another format applying the substitutions (2.101a),

(2.101b) from electro-magnetic theory:

λ =
c

ν

ρν =
Iν

c/n

Thus now we can rewrite equation (2.105) into the form:

dN2

dt
|radiativ = −A21N2 −

(
A21

λ2

8πn2
g(ν)

)
Iν

hν

(
N2 −

g2

g1

N1

)
(2.106)

If we abbreviate the term in first brackets as σ(ν), then

dN2

dt
|radiativ = −A21N2 −

Iνσ(ν)

hν

(
N2 −

g2

g1

N1

)
(2.107)

where Iν is the intensity of the incident photon stream (in W/m2), hν is the energy of

single photon in the stream and σ(ν) is a cross section of the transition (in this case
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the stimulated emission cross section has the dimensions of ”area” m2) and is:

σ(ν) = A21
λ2

8πn2
g(ν) (2.108)

The cross section σ(ν) can be interpreted as the cross sectional area of the atom to

the photon flux Iν/hν. A typical values for this is in the range of the cross section of

an atom (10−16 cm2), but can be as big as (10−12 cm2) or as small as (10−20 cm2).

The term (Iνσ(ν))/(hν) is often called the transition probability in units of s−1. For an

absorption process, it is obvious that more light intensity results in a higher probability

of absorption of a photon. The same holds true for stimulated emissions where a higher

intensity of light results in a higher probability of a stimulated emission.

And the final equation in this subsection that we need for the transformations in the

next sections is the relation between σ(ν), B21 and photon density n:

B21ρν = cσ(ν)n (2.109)

2.2.2. Pumping Processes

In the solid state lasers, the pumping action may be provided by an intensive optical

radiation causing the stimulated transition between the ground state GL and the other

higher energy states, where the particles in the higher energy states relax preferentially

into the upper laser level ULL state (see Fig. 2.8).

For a cw lamp- or diode-pumped laser, we can define the pump efficiency ηp as the

ratio between the minimum pump power Pmin required to produce a given pump rate

Rp, and the actual electrical power Ppow entering to the pump source

ηp =
Pmin

Ppow

, (2.110)

To describe the pump rate distribution in the active medium we can write

Pmin = hνmp

∫
a

RpdV = hνmpRpV, (2.111)
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where the integral is taken over the whole volume of the medium and Rp is the average

of Rp in the medium. Then we obtain from (2.110) and (2.111)

ηp =
hνmpRpV

Ppow

. (2.112)

For a pulsed pumping system, we can likewise define ηp as:

ηp =
hνmp

∫
RpdV dt

Epow

. (2.113)

where the integral is also taken over the whole volume of the medium and the whole

duration of the pump pulse, and where Ep is the electrical pump energy given to the

lamp.

To calculate or simply estimate the pumping efficiency, the pump process can be

divided into four distinctive steps [Svelt90]:

a) emission of radiation by the lamp;

b) transfer of this radiation to the active medium;

c) absorption in the medium;

d) transfer of the absorbed power to the upper laser level.

Consequently, the pumping efficiency can be written as the product of four terms,

namely:

ηp = ηr ηt ηa ηpq (2.114)

where:

ηr is the efficiency of conversion from electrical input to the lamp to light output in

the wavelength range corresponding to pump bands of the laser medium (radiative

efficiency);

ηt is the ratio between power (or energy) actually entering the medium and power

emitted by the lamp in the useful pump range (transfer efficiency);

ηa is the fraction of light entering the medium that is actually absorbed by the material

(absorption efficiency);

ηpq is the fraction of absorbed power or energy actually used to populate the upper

laser level (power or energy quantum efficiency). Note that ηpq is given by ηpq =

RpV hνmp/Pa, where Pa is the absorbed power. Specific expressions for the preceding

efficiency terms can be obtained when the lamp spectral emission, pump geometry,

medium absorption coefficient and geometry are known.
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The pump rate can be finally obtained from (2.112) as

Rp = ηp

(
P

Alhνmp

)
(2.115)

where A is the cross sectional area of the active medium and l is its length. This is

the simple basic expression for the (average) pump rate often used in the laser theory

and which will be used for our computations. Note, however, that to obtain Rp from

(2.115) one must know ηp, implying that detailed calculations.

2.2.3. Losses in the Resonator and Decay Time of the Photons

To characterize the loses in a resonator two additional parameters should be intro-

duced: the total loss coefficient γr and the photon decay time τc [Csele04]. Resonator

losses occur because of absorption and scattering in the lasing medium itself, at laser

windows, at the high reflector mirror as a result of unintended loss and as at the out-

put mirror an intended loss, which forms the output beam. As a rule, the losses are

expressed as a coefficient in m−1 units.

Losses at each mirror are expressed as loss coefficients (γ1 is for one mirror with R1

and γ2 is for the other mirror with R2) as if the loss was distributed throughout the

entire laser:

γ1 =
ln 1

R1

2L
(2.116)

where R1 is the reflectivity of the mirror.

The other primary loss are caused by absorption or scattering in the lasing medium

and are designated as γa. In the solid-state laser with the gain medium with length

L, these loses can be estimated with the following approximation:

γa =
2γmediumLmedium

2L
(2.117)

Here are the total loss for a round-trip through the laser medium divided by the length

of the cavity (2L). In the solid-state laser this would not compensate for the index of

refraction of the medium, which leads to an apparent length (optically considering)

of nmediumLmedium, but for most practical lasers the medium is much shorter than the

total cavity length. So now, an overall distributed loss coefficient γr can be used to
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describe the total cavity losses as

γr = γa + γ1 + γ2 (2.118)

Photon decay time (τc) refers to the average time that the photon spends in the cavity

of a laser before passing through the output mirror and becoming part of the output

beam or being absorbed in the lasing medium itself. It is best illustrated by an example

in which a simple laser cavity consists of one fully reflecting mirror and one mirror of

98 % reflectivity. If the mirrors are separated by 0.2 m, the expected photon lifetime

is

τc =
round− trip distance in the cavity

speed of light

1

cavity loss factor
=

2 ∗ 0.2

3 ∗ 108

1

0.02
= 67 ns

While the photon takes only 3.3 ns to traverse the entire 1-m round trip in the cavity,

the probability of passing through the output mirror is low since it has high reflectivity.

In average, a photon will make 50 such round trips before exiting the cavity.

Because we have defined the cavity loss factor as a function of length (in m−1), the

product of the loss factor with the speed of light (in m/s) defines the loss of photons

per unit time (in s−1), so the expression for photon lifetime simplifies to

τc =
1

cγr

(2.119)

This relation is useful in further calculations involving energy storage in the laser

cavity. Finally, photon decay time is also related to the spectral linewidth of laser

output by

δν =
1

2πτc

(2.120)

From the mathematical point of view, it is the Fourier transform relationship between

frequency and time. This is also a mechanism, by which laser lines are broadened, and

is called lifetime broadening (e.g. in gas laser the linear broadening is determinined,

in solid state lasers - nonlinear Doppler broadening).
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2.2.4. Population Inversion and Photon Density

Lases can be classified by the number of energy levels involved in the lasing process as

three- or four-level lasers. In a three-level system (the simplest one), energy injected

into the gain medium excites atoms to a pump level 3 above the upper lasing level.

From there, atoms decay to the upper lasing level 2. This decay to the upper lasing

level usually occurs by emitting heat, but not the photons. It is rapidly and quickly

populates the upper energy level. This upper level often has a long lifetime, so a

healthy population of atoms builds in that level. Lasing transitions now occur between

the upper level and the ground state 0 or it sublevel 1 emitting laser light in the process.

This system is characterized by the lack of a discrete lower lasing level; the ground

state serves to that purpose. Fig. 2.8 (a) shows the energies involved in a three-level

laser including the pump, upper lasing level, and lower lasing levels.

Four-level systems feature a discrete lower lasing level between the upper and ground
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Fig. 2.8.: Ideal (a) three-level and (b) four-level lasers

states as shown in Fig. 2.8 (b). Atoms making a laser transition to the lower state

decay further to the ground state, in some cases emitting a photon. Four-level lasers

are the most common so far. Laser gain is realized as soon as pump energy is applied

to the system. Pump energy is injected into the pump level 3 where it decays to the

upper lasing level 2, almost instantaneously in most cases. Assuming that the upper

level has a longer lifetime than the lower level 1 (and it does in most four-level lasers),

a population inversion occurs almost immediately after the pump energy is injected.

Although, there may not be a usable output beam (since any small produced gain will
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be lost to absorption as other losses within the system until a threshold is reached),

there is a population inversion and hence a gain. Injecting a little more energy into

the system will raise the gain to a level where it exceeds lasing threshold and a usable

output beam appears.

The level system in a real laser is more complex as shown in Fig. 2.9. The pumping

levels of a real laser are very often a bands, that can absorb pump light in a large

range of energies. Also the upper and lower laser level are not single levels very often,

however split in a large number of sublevels (for example for a solid state laser build

on a crystal by means of Stark’s effect). Thus the laser generation occurs not on a

single transition rather large number of wavelength can be generated simultaneously.

In Fig. 2.9 a further ”simplified” well-known laser systems of real three-level Cr3+ :

Al2O3 (a) and four-level Nd3+ : Y AG (b) lasers are shown. Few words about features

of these both lasers should be mentioned. Due to the three-level system of ruby laser,

a very strong pumping is required to achieve population inversion. The reason of why

ruby works quite gut as a laser material lies in the two broad pump bands, which

readily absorb energy from a flashlamp. As well as being broad, the pump bands

have incredibly short lifetimes (in the range of 1 µs), which causes the energy to be

absorbed into these pump bands and to relax almost immediately to the upper lasing

level. Finally, the lifetime of the upper level, 3 ms, is quite long allowing the excited

ions to remain there for a quite a long time to have a good chance of emitting light by

stimulated emission. Although, most ruby lasers are pulsed, it is possible to operate

the material as a cw laser. Therefore extreme cooling is required in order to depopulate

a portion of the ground level.

In contrast to ruby laser, the Nd:YAG laser (neodymium ions in a yttrium-aluminum-

garnet host crystal) is a four-level laser. All pump levels have short lifetimes, around

100 ns, and decay rapidly to the upper lasing level. The upper level has a very long

lifetime of 1.2 ms compared to the lower level, which decays to ground in 30 ns. Due

to the fact that upper and lower laser levels are depleted by Stark’s effect into many

sublevels, a generation on manifold transitions can take place. The powerful transition

with a relative long lifetime occurs at 1064 nm. In laser theory, such a transition (with

long lifetime) is called metastable.

Now let us derive the equation that defines the laser lasing or laser dynamics. In

our first approach, we consider the cases of space-independent rate equations, i.e., we

assume that the laser oscillates in a single mode and pumping and energy densities

distribution of this mode and pumping is uniform within the laser material. As far as

mode energy density is concerned, this means that the mode transverse profile must
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Fig. 2.9.: Energy levels in real (a) Cr3+ : Al2O3 and (b) Nd3+ : Y AG lasers

be uniform and we are neglecting the effects of the standing wave character of the

mode. In the second step, we consider the rate equations for the energy of a lowest

Gauss mode (space dependent computation).

Let us compute the rate equations for three-level laser. To simplify our consideration

we assume that the lower laser level 1 in Fig. 2.8 (a) is a sublevel of the ground level

0. Likewise the upper laser level, level 2 may be a sublevel of a set of upper state

sublevels. In this case, we let N1 and N2 represent the total population of all ground-

state and all upper-state sublevels respectively. We assume a very rapid decay from the

pump level(s) to the upper state sub-levels, so that we need to be concerned only with

populations N1 and N2 (ideal three-level case). Then only a non-negligible fraction of

the ground-state population N1 is present in the lower laser level; this results in laser

photon absorption.

The rate equations for both upper and lower state laser sublevels can be written for

populations N1 and N2 according to (2.107) and (2.109) as follows

∂N1

∂t
=

(
N2 −

g2

g1

N1

)
cnσ +

N2

τ21

− RpN1 (2.121a)

and

∂N2

∂t
= −∂N1

∂dt
(2.121b)
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since

Ntot = N1 + N2 (2.121c)

where explicit expressions for the pumping rate Rp were derived in Section 2.2.2 for

cw pumping. The first and second terms in equation (2.121a) describe increase of the

population inversion of the lower laser level by stimulated and spontaneous emissions

respectively, and at third - decrease of it by the pumping process. Likewise the upper

laser level decreases due to the emissions and increases by transition of the atoms from

pumping level on upper lasing level.

To rewrite this system of equations to a single equation, which completely defines the

change of population inversion density in time let us define

N = N2 −
g2N1

g1

(2.122)

And now, if we combine the equations (2.121a), (2.121b) and (2.121c) with (2.122) we

get
∂N

∂t
= −γcnσN − N + Ntot(γ − 1)

τf

+ Rp(Ntot −N) (2.123)

where

γ = 1 +
g2

g1

and τf = τ21 (2.124a)

N1 =
Ntot −N

1 + g2/g1

and N2 =
N + (g2/g1)Ntot

1 + g2/g1

(2.124b)

Another important equation, which describes the laser operation is the rate of the

change of the photon density within the laser resonator:

∂n

∂t
= Nnσc− n

τc

+ S (2.125)

where first term on the right describe the increase of the photon density by stimulated

emission, the second term describe decrease of the photon density by losses in the

optical resonator (τc is the decay time of the photons as described in Section 2.2.3); S

is the rate, at which spontaneous emission is added to the laser emission. Although,

the value of S is very small, this term is needed as the source of radiation, which
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initiates laser emission.

To take into account the spontaneous emission of equation (2.125), we may be at-

tempted to apply similar considerations of balance starting with the term N2/τ21

where τ21 is the radiative lifetime of level 2, which is included in the equation for pop-

ulation inversion (2.121a). One might then think that the appropriate term to include

into (2.125) to take into account the spontaneous emission, is A21N2/τ21 (as the equa-

tion (2.90) describe). This would not be true, however. In fact, spontaneously emitted

light is distributed over the entire frequency range corresponding to the gain band-

width; furthermore emission occurs into a 4π solid angle. The spontaneous emission

term required in (2.125) must, however, include only the fraction of the spontaneously

emitted light that contributes to the given mode (i.e., that is emitted in the same

angular direction and spectral bandwidth of the mode) [Svelt90].

Thus, let pL is the number of modes of the laser output and p is the total number of

resonant modes possible in the laser resonator volume V and given as:

p = 8πν2 ∆νV

c3
(2.126)

Then we can express S as the rate, at which spontaneous emission contributes to

stimulated emission

S =
pLN2

pτ21

(2.127)

The equations (2.123) and (2.125) describe completely a space independent behavior

of the idealized three-level laser, e.g ruby laser. These equations are called scalar laser

rate equations. Note that the equation for population inversion will have the different

form for each kind of laser (three- and four-level lasers) where the equation for photon

density is still the same.

To compute the a rate equation for four-level scheme we again assume that there is

only one pump level or band (level 3 in Fig. 2.8 (b) and relaxation from the pump

band to the upper laser level 2 as well as relaxation proceeds very rapidly from the

lower laser level 1 to the ground level . The following analysis remains unchanged,

however, even if more than one pump band (or level) is involved that decay from

these bands to the upper laser level is still very rapid. Under these conditions, we can

make the approximation N1
∼= N3

∼= 0 for the populations of the lower laser level and

pump level(s). Thus, we need a deal with only one population, namely, the population

N2 = N of the upper laser level. We assume that the laser is oscillating on one cavity

mode only.
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So, the change in the four-level system is

∂N

∂t
= RpNtot −RpN −Ncnσ − N

τf

(2.128a)

Ntot = N0 + N2 ≈ N0 sinse N2 � N0 (2.128b)

In equation (2.128a), the quantity τf represents the lifetime of the upper laser level

and is given by
1

τf

=
1

τ21

+
1

τ20

(2.129)

where τ21 is the lifetime of the upper-laser level for radiative process and τ20 is the

lifetime of the upper-laser level for nonradiative process. Note that the upper-laser

level often consists of a combination of many tightly coupled sublevels.

Let remind that the equations (2.123), (2.125) and (2.128a) describe the the time-

dependent behavior of the changes of the population inversion and photon density

within the gain medium for three- and four-level laser, but do not cover a volume

distribution of the radiation energy. Thus, in the next step, we have to derive the

equations that describe the wave entirely in time and volume.

Let us now include the term of energy distribution into the rate equation. We begin

with the dependence of energy from volume that is well-known from electrodynamics

[Kroeg87]

dW =
ε0

2
|E|2dV (2.130)

where E is an electric field force in a volume element dV . Thus, the energy density in

every point of the electromagnetic field is

W =
dW

dV
=

ε0

2
|E|2 (2.131)

Rewriting this equation for photons and applied Plank’s law υ = (E2 − E1)/h we

obtain the relation between energy of electromagnetic filed caused by photons and

photon density

n =
ε

2~ω
|E|2 (2.132)

Each Gauss mode, which propagate through the resonator has its own amplitude,

which changes with the time and energy which depending on coordinate only. So, let
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us rewrite E as

E(t, x, y, z) = ξ(t)Ẽ(x, y, z) (2.133)

Then, according to (2.132)

ñ(t, x, y, z) =
ε

2~ω
Ξ(t)|Ẽ(x, y, z)|2 (2.134)

where

Ξ(t) = |ξ|2(t) (2.135)

We can also rewrite the equation (2.123) for population inversion as

∂N(t, x, y, z)

∂t
= −γN(t)σc

ε

2~ω
Ξ(t)|Ẽ|2(x, y, z)

− N(t) + Ntot(γ − 1)

τf

+ Rp(Ntot −N(t)) (2.136)

and (2.128a)

∂N(t, x, y, z)

∂t
= RpNtot −RpN(t)

− N(t)cσ
ε

2~ω
Ξ(t)|Ẽ|2(x, y, z) − N(t)

τf

(2.137)

To compute the photon density we have to integrate it over the medium volume Ω

∂
∫

Ω
ñ(t, x, y, z)

∂t
= σc

∫
Ω

N(t, x, y, z) ñ(t, x, y, z) dx dy dz

−
∫

Ω
ñ(t, x, y, z)

τc

+

∫
Ω

S dx dy dz (2.138)

If we change ñ(t, x, y, z) in this equation by (2.134) and divide both sides by constant

term ε/(2~ω) then we get the equation, which describes the change of the photon

density with the time, however, depending on the space too. This is our final equation

for simulation of laser dynamics:

∂Ξ(t, x, y, z)

∂t
= Ξ(t)σc

∫
Ω

N(t, x, y, z) |E|2(x, y, z) dx dy dz

− Ξ(t)

τc

+
2~ω

ε

∫
Ω

S dx dy dz (2.139)



3. Practical Implementation and Results

The programming implementation of the problems of Gaussian beam analysis and

laser dynamics simulation treated in this thesis are realized with C++. To visualizate

the results two different software has been utilized. For 3D visualization of energy

distribution in the resonator we use OpenDX ver.4.3.2 (IBM Visualization Data Ex-

plorer) and laser behavior in laser rate equation simulations is visualized by GnuPlot

ver.4.0.

3.1. Describing of the Resonator

To describe each element in a resonator we implement a class ResElement contain-

ing information about a type of element, it typical properties (length, focal length,

refraction index, position) as well as matrix properties of it (sequential number, ray

matrix and beam parameter):

class ResElement {
private:

int elem type; /∗type of element∗/
double distance; /∗length L of element∗/
double focal length; /∗focal length f of element∗/
double curvature; /∗curvature R of element∗/
double refr in; /∗input refraction index n of element∗/
double refr out; /∗output refraction index of element∗/
double ztilde start; /∗begin z−coordinate of element∗/
double ztilde end; /∗end begin z−coordinate of element∗/
long int elem numb; /∗sequential number of element∗/
struct mx M; /∗ABCD−matrix of element∗/
struct vc Q; /∗beam parameter of element∗/

}

As optical elements in a class ResElement a free space, thin lens, mirror, dielectric

surface or medium could be used:

42



3. Practical Implementation and Results 43

#define RESELEM FREE SPACE 0
#define RESELEM THIN LENS 1
#define RESELEM CURVED MIRROR 2
#define RESELEM DIELECTRIC SURF 3
#define RESELEM DIELECTRIC MEDIUM 4

For all these optical elements the ray-matrices are defined and realized in a func-

tion build matrix. Below are showed a part of this function with ray matrices of

curved mirror and dielectric medium:

void ResElement::build matrix(char type){
switch(type){
. . .

case RESELEM CURVED MIRROR:
M.m00= complex<double>(1.,0.);
M.m01= complex<double>(0.,0.);
M.m10= complex<double>(−2./curvature,0.);
M.m11= complex<double>(1.,0.);
break;

case RESELEM DIELECTRIC MEDIUM:
M.m00= complex<double>(1.,0.);
M.m01= complex<double>(distance/refr in,0.);
M.m10= complex<double>(0.,0.);
M.m11= complex<double>(1.,0.);

break;
. . .
}

A beam propagation in a resonator and its essential properties are computed in a class

Resonator:

class Resonator{
private:
ResElement ∗reselems;
long elem numb;
complex<double> discriminant;
complex<double> eigenval1;
complex<double> eigenval2;
complex<double> sum m00 m11;
struct mx M;
struct vc V1;
struct vc V2;
struct vc Q;
struct mx mx mul4x4(struct mx source0, struct mx source1);
struct vc mv mulMxQ(struct mx source0, struct vc source1);
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. . .
};

A function build matrix and vector compute all essential resonator characteristics:

the total matrix of system, it eigenvalues according to (2.69) and (2.70) and eigenvec-

tors according to (2.86a) and (2.86b), and at the final beam parameter q according to

(2.82) and (2.87):

void Resonator::build matrix and vector(void){
M=get reselement(0)−>get matrix();
for(i=1;i<elem numb;i++){
M=mx mul4x4(M,get reselement(i)−>get matrix());
}
discriminant=(M.m00+M.m11)/2.;
eigenval1=discriminant+sqrt(discriminant∗discriminant−1.);
eigenval2=discriminant−sqrt(discriminant∗discriminant−1.);
V1.v0=eigenval1−M.m11;
V1.v1=M.m10;
V2.v0=eigenval2−M.m11;
V2.v1=M.m10;
Q.v0=V1.v0/V1.v1;
Q.v1=1.;
get reselement(0)−>put vectorQ(Q);

for(i=1;i<elem numb;i++)
get reselement(i)−>put vectorQ(mv mulMxQ(M,Q));

return;
}

In this function the stability of a resonator is also checked:

if((abs((complex<double>(res.get sum m00 m11().real()/2.,
res.get sum m00 m11().imag())))
<= abs(complex<double> (1.,0.)))){
printf("The resonator is STABLE\n");

} else{
printf("The resonator is NOT STABLE\n");
exit(1);
}

If the examined resonator is stable the computation of the propagation and energy

distribution of Gauss mode can be started.

Before closing this subsection, let us explain the format of configuration file ResSim-

ulator.cfg that include a input data of optical elements and resonator needed for

computation
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<Number of ResElements>
{
type
name
distance
focal length
curvature
refr in
refr out
ztilde end
ztilde start

}

3.2. Simulation of Gauss Mode

3.2.1. Discretization of Gauss Mode Equation

A basic equation for volume-dependent simulation of energy distribution in a resonator

is a normalized Gauss mode equation (2.43). Due to the laser resonator have a shape of

a tetragon (parallelepiped) we descretize a resonator volume using cube discretization

with cube as a discretizing element.

Let us assume that Lx, Ly and Lz are a height, a width and a length of resonator,

Mx, My and Mz are the numbers of points of x-, y- and z-coordinate, respectively. We

define these values in input parameter file param.dat as follows

2.e−5 /∗height Lx of resonator∗/
2.e−5 /∗width Ly of resonator∗/
1.e−4 /∗length Lz of resonator∗/
9 /∗number of discretization points in x−direction Mx∗/
9 /∗number of discretization points in y−direction My∗/
20 /∗number of discretization points in z−direction Mz∗/

Then

deltaX = Lx/Mx

deltaY = Ly/My (3.1)

deltaZ = Lz/Mz
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are the step sizes of x-, y- and z-coordinate. Respectively, the current coordinates are

xix = deltaX ∗ ix

yiy = deltaY ∗ iy (3.2)

ziz = deltaZ ∗ iz

where ix = 0 . . . Mx− 1, iy = 0 . . . My − 1, iz = 0 . . . Mz − 1 and s denote a current

element number in a resonator.

The shifting of the Gauss mode in 3D-space on our grid is

Es
xix,yiy ,ziz

=
1

qs + (ziz − z̃s)
exp

(
−iκ

x2
ix + y2

iy

2(qs + (ziz − z̃s))

)
(3.3)

where z̃s denote the end z-coordinate of current resonator element (we need it, as the

electromagnetic wave propagates in different ways in different environment).

The computation of energy distribution of Gauss mode is made in class Gauss

class Gauss{
private:
FILE ∗fileIn,∗fileOut;
long elem numb;
Resonator ∗res;
double ∗E;
double deltaX, deltaY, deltaZ;
double Lx,Ly,Lz;
int Mx,My,Mz;

public:
Gauss(Resonator ∗rs);
˜Gauss();
int get magic s(long pass, double z);
void energy(long pass);
void rate equations(void);
double energy print(void);

};

where the function get magic s returns the current number of resonator element and

the variable pass means how many times the wave goes through the resonator

int Gauss::get magic s(long pass, double z){
int i;
ResElement ∗relem;
for(i=0;i<elem numb;i++){
relem=res−>get reselement(i);
if(pass%2?z<relem−>get ztilde end()



3. Practical Implementation and Results 47

&& z>=relem−>get ztilde start()
:z>=relem−>get ztilde end()
&& z<relem−>get ztilde start())

return i;
}
cout << " error in get magic s " << endl;
return 0;

}

As you have seen that in rate equation for population inversion we use the absolute

value of energy for computation therefore we calculate the absolute value of it in our

programm at the simulation of values of it

void Gauss::energy(long pass){
long i,offset=0;
complex<double> auxi (0.,0.);
complex<double> auxi1 (0.,0.);
double coord=0.;
int ix,iy,iz;
for(ix=−(Mx−1)/2;ix<(Mx−1)/2+1;ix++)
for(iy=−(My−1)/2;iy<(My−1)/2+1;iy++)
for(iz=0;iz<Mz;iz++){
i=get magic s(pass,iz∗deltaZ);
auxi1=complex<double>(1.,0.)
/(res−>get reselement(i)−>get vectorQ().v0
+complex<double>(iz∗deltaZ)
−complex<double>(res−>get reselement(i)−>
get ztilde end()));

auxi =complex<double>(1.,0.)
/(complex<double>(2.,0.)
∗(res−>get reselement(i)−>get vectorQ().v0
+complex<double>(iz∗deltaZ)
−complex<double>(res−>get reselement(i)−>
get ztilde end())));

coord =(ix∗deltaX∗ix∗deltaX)+(iy∗deltaY∗iy∗deltaY);
∗(E+offset)=abs(auxi1∗exp(−K∗coord∗auxi.imag()));
offset++;

}
return;

}

where auxi and auxi1 are two auxiliary number to simplify the complicated equation

for the energy.
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3.2.2. Results of Simulation of Gauss Mode Distribution

Fig. 3.1 - Fig. 3.5 show results of the simulation of Gauss mode distribution in the

symmetric and non-symmetric resonators. In our examples we use Nd:YAG and ruby

laser crystals with an aperture of 2 mm that are placed in the middle of a resonator.

Due to a small misalignment in the refraction indices of Nd:YAG and ruby the energy

distribution results are very similar to each other.

4-3-3-3.75

Fig. 3.1.: Energy distribution in resonator with Lres = 0.04 m, Lmed = 0.03 m, R1 =
0.03 m, R2 = 0.0375 m
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6-5-6-4.75

Fig. 3.2.: Energy distribution in resonator with Lres = 0.06 m, Lmed = 0.05 m, R1 =
0.06 m, R2 = 0.0475 m

10-5-10-15

Fig. 3.3.: Energy distribution in resonator with Nd:YAG, Lres = 0.1 m, Lmed =
0.05 m, R1 = 0.1 m, R2 = 0.15 m
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10-5-25-25

Fig. 3.4.: Energy distribution in resonator with Lres = 0.1 m, Lmed = 0.05 m, R1 =
0.25 m, R2 = 0.25 m

20-8-25-25

Fig. 3.5.: Energy distribution in resonator with Lres = 0.2 m, Lmed = 0.08 m, R1 =
0.25 m, R2 = 0.25 m
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3.3. Simulation of Rate Equations

3.3.1. Euler Discretization of Rate Equations

For our time-dependent simulation we use the Euler time discretization as the equa-

tions have not the analytical solution.

Let 0 < t < T , where t is the time and T is the period of the simulation time. Let

p is the number of the time steps, then τ = T/p is the time step. As you can see

in equation for population inversion (2.136) for three-level system we have minuses

before terms with N(t, x, y, z), thus we should use implicit mesh steps

N t+1(t, x, y, z)−N t(t, x, y, z)

τ
= − γN t+1(t, x, y, z)σc

ε

2~ω
Ξt|Ẽ(x, y, z)|2

− N t+1(t, x, y, z) + Ntot(γ − 1)

τf

+ Rp(Ntot −N t+1) (3.4)

From this equation we get

N t+1(t, x, y, z) =
τ
(

Ntot(γ−1)
τf

+ RpNtot

)
+ N t

1 + τ
(
γσc ε

2~ω
Ξt|Ẽ(x, y, z)|2 + 1/τf + Rp

) (3.5)

and for four-level system (2.137)

N t+1(t, x, y, z)−N t(t, x, y, z)

τ
= − N t+1(t, x, y, z)σc

ε

2~ω
Ξt|Ẽ(x, y, z)|2

− N t+1(t, x, y, z)

τf

+ Rp(Ntot −N t+1) (3.6)

that implies

N t+1(t, x, y, z) =
τRpNtot + N t

1 + τ
(
σc ε

2~ω
Ξt|Ẽ(x, y, z)|2 + 1/τf + Rp

) (3.7)

In equation (2.139) for the change of the photon density we have the integration over

the volume. In the implementation we have to change the integrals by the sums of the

values at each point of volume discretization multiplied by volume of one cube (each
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element of discretization). Thus, we rewrite (2.139) by

∂Ξ(t)

∂t
≈ Ξ(t)σc

Mn∑
0

N(t, x, y, z)|Ẽ(x, y, z)|2deltaX deltaY deltaZ

− Ξ(t)

τc

+
2~ω

ε

Mn∑
0

S(x, y, z) deltaX deltaY deltaZ (3.8)

In this equation we see, that we have ”+” before the first term with the Ξ(t) and

”-” before second one. This means that we should use explicit and implicit cases of

discretization. In fact,

if (σc

Mn∑
0

N(t, x, y, z)|Ẽ(x, y, z)|2deltaX deltaY deltaZ − 1

τc

) > 0 then

explicit:

Ξt+1(t)− Ξt(t)

τ
= Ξt(t)σc

Mn∑
0

N t(t, x, y, z)|Ẽ(x, y, z)|2deltaX deltaY deltaZ

− Ξt(t)

τc

+
2~ω

ε

Mn∑
0

S(x, y, z) deltaX deltaY deltaZ (3.9)

that implies

Ξt+1(t) = Ξt(t) + τ(Ξt(t)σc
Mn∑
0

N t(t, x, y, z)|Ẽ(x, y, z)|2deltaX deltaY deltaZ

− Ξt(t)

τc

+
2~ω

ε

Mn∑
0

S(x, y, z) deltaX deltaY deltaZ) (3.10)

else implicit:

Ξt+1(t)− Ξt(t)

τ
= Ξt+1(t)σc

Mn∑
0

N t(t, x, y, z)|Ẽ(x, y, z)|2deltaX deltaY deltaZ

− Ξt+1(t)

τc

+
2~ω

ε

Mn∑
0

S(x, y, z) deltaX deltaY deltaZ (3.11)
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from this one we get

Ξt+1(t) =
τ 2~ω

ε

∑Mn

0 S(x, y, z) deltaX deltaY deltaZ + Ξt(t)

1− τ(σc
∑Mn

0 N t(t, x, y, z)|Ẽ(x, y, z)|2deltaX deltaY deltaZ − 1/τc)
(3.12)

In our program:

for(t=0;t<tsteps;t++){
offset=0;
sum=sum1=sum2=0.;
for(ix=−(Mx−1)/2;ix<(Mx−1)/2+1;ix++)
for(iy=−(My−1)/2;iy<(My−1)/2+1;iy++)
for(iz=0;iz<Mz;iz++){
i=get magic s(0,iz∗deltaZ);
relem=res−>get reselement(i);
if(relem−>get elemtype()==RESELEM DIELECTRIC MEDIUM){
/∗for ruby∗/
/∗NN = (∗(N+offset)/deltaT − totN∗(gamma−1.)/tauF+Rp∗totN)

/(1./deltaT+gamma∗Xi∗sigma∗C∗epsilon/2./h bar/omega∗
∗(E+offset)∗∗(E+offset)+1./tauF+Rp);

∗/
/∗for Nd:YAG∗/
NN=(deltaT∗totN∗Rp+∗(N+offset))
/(1.+deltaT∗(C∗sigma∗epsilon/2./h bar/omega∗Xi∗
∗(E+offset)∗∗(E+offset)+1./tauF+Rp));

sum2+=∗(N+offset)∗∗(E+offset)∗∗(E+offset)
∗deltaX∗deltaY∗deltaZ;

sum1+=S∗deltaX∗deltaY∗deltaZ;
∗(N+offset)=NN;
if((ix==0)&&(iy==0)&&(iz==Mx/2)){
fprintf(fileNdat,PRNMASK PRNMASK "\n",t∗deltaT,∗(N+offset));
} //if

offset++;
} //for iz, iy, ix

if((sum2∗sigma∗C−1./tauC)>0.)
Xii=Xi+deltaT∗(C∗Xi∗sigma∗sum2−Xi/tauC

+2.∗h bar∗omega/epsilon∗sum1);
else

Xii=(2.∗h bar∗omega/epsilon∗sum1+Xi/deltaT)
/(1./deltaT−C∗sigma∗sum2+1./tauC);

Xi=Xii;
fprintf(fileXi,PRNMASK PRNMASK "\n",t∗deltaT,Xi);

} //for t
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3.3.2. Results of Rate Equation with Idealized cw Pumping
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Fig. 3.6.: Population inversion and photon density for Nd:YAG in a resonator that is
shown in Fig. 3.1
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Fig. 3.7.: Population inversion and photon density for Nd:YAG in a resonator that is
shown in Fig. 3.2
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Fig. 3.8.: Population inversion and photon density for Nd:YAG in a resonator that is
shown in Fig. 3.3
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Fig. 3.9.: Population inversion and photon density for Nd:YAG in a resonator that is
shown in Fig. 3.4

.
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Fig. 3.10.: Population inversion and photon density for Nd:YAG in a resonator that
is shown in Fig. 3.5

3.3.3. Results of Rate Equation with Pulsed Pumping
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Resonator: L =0.1 m, L =0.05 m, R =0.25 m, R =0.25 mres med 1 2

Resonator: L =0.2 m, L =0.08 m, R =0.25 m, R =0.25 mres med 1 2

Fig. 3.11.: Time development of population inversion for different resonators with
Nd:YAG
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Fig. 3.12.: Population inversion and photon density for Nd:YAG pulsed pumped in a
resonator that is shown in Fig. 3.3
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Fig. 3.13.: Population inversion and photon density for Nd:YAG for quasistationary
pulsed pumped in a resonator that is shown in Fig. 3.4
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Fig. 3.14.: Population inversion and photon density for Nd:YAG for pulsed transient
pumped in a resonator that is shown in Fig. 3.4
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A. Optical Properties of Nd:YAG and Ruby

Nd:YAG

Index of refraction n 1.82

Wavelength λ 1064 nm

Photon energy at 1064 nm E 1.16 eV

Nd3+ concentration (by 1% wt.% Nd) NNd 1.38 · 1020 cm−3

Laser transition cross section (4F3/2 →4 I11/2) σ 2.8 · 10−19 cm2

Upper laser state lifetime τc 230 µs

Lower laser state lifetime τf 30 ns

Ruby

Index of refraction n 1.76

Wavelength λ 694.3 nm

Photon energy at 1064 nm E 1.79 eV

Cr3+ concentration (by 0.05% wt.% Cr) NCr 1.58 · 1019 cm−3

Laser transition cross section (E →4 A2) σ 2.5 · 10−20 cm2

Upper laser state lifetime τc 3 ms
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B. Ray Matrices for Some Optical Elements
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